Difference between revisions of "Part:BBa K5115034"

Line 6: Line 6:
 
__TOC__
 
__TOC__
 
===Introduction===
 
===Introduction===
 
+
The Ni-Fe hydrogenase we use is an enzyme that functions in vivo bidirectionally for NAD<sup>+</sup> reduction and NADH oxidation coupled to H<sub>2</sub> uptake and H<sub>2</sub> production, respectively. <ref>Teramoto, H., Shimizu, T., Suda, M., & Inui, M. (2022). Hydrogen production based on the heterologous expression of NAD+-reducing [NiFe]-hydrogenase from Cupriavidus necator in different genetic backgrounds of Escherichia coli strains. International Journal of Hydrogen Energy, 47(52), 22010–22021. </ref> In our design, the Ni-Fe hydrogenase works mainly to restore the nickel to a zero valence, which can help reduce nickel toxicity and collect nickel particles.
  
 
===Usage and Biology===
 
===Usage and Biology===
 +
The Ni-Fe hydrogenase is made up of six major and three auxiliary subunits. The former includes hoxF, hoxU, hoxY, hoxH, hoxW and hoxI, while the latter includes hypA, hypB and hypF.
 +
 +
The hoxF and the hoxU form the module of NADH dehydrogenase. The hoxF is a hydrogenase subunit responsible for electron transport. The most important group in hoxF is FMN-b, which has the ability of switching electron. Under anaerobic conditions, NADH is oxidized to NAD<sup>+</sup> on the surface of hoxF subunit. In the meanwhile, the electrons generated in this reaction travel through a series of processes to the hoxH, completing the reduction of the hydrogen ion. Under aerobic conditions, NAD<sup>+</sup> is reduced to NADH on the surface of the hoxF subunit. The electron transferring is contrary to former. <ref>Löscher, S., Burgdorf, T., Zebger, I., Hildebrandt, P., Dau, H., Friedrich, B., & Haumann, M. (2006). Bias from H2 Cleavage to Production and Coordination Changes at the Ni−Fe Active Site in the NAD+-Reducing Hydrogenase from Ralstonia eutropha. Biochemistry, 45(38), 11658–11665.</ref> The hoxU houses a 2Fe-2S cluster and is responsible for the role of conducting electrons between hoxH and hoxF. <ref>Löscher, S., Burgdorf, T., Zebger, I., Hildebrandt, P., Dau, H., Friedrich, B., & Haumann, M. (2006). Bias from H2 Cleavage to Production and Coordination Changes at the Ni−Fe Active Site in the NAD+-Reducing Hydrogenase from Ralstonia eutropha. Biochemistry, 45(38), 11658–11665.</ref>
 +
 +
The hoxY and the hoxH form the module of catalytic center.The hoxY houses a [4Fe-4S] cluster of the site, and an FMN group (FMN-a) near the Ni-Fe site in the hoxH. It is also responsible for the role of conducting electrons between hoxH and hoxF.<ref>Löscher, S., Burgdorf, T., Zebger, I., Hildebrandt, P., Dau, H., Friedrich, B., & Haumann, M. (2006). Bias from H2 Cleavage to Production and Coordination Changes at the Ni−Fe Active Site in the NAD+-Reducing Hydrogenase from Ralstonia eutropha. Biochemistry, 45(38), 11658–11665.</ref> The most important site in hoxH is the [NiFe] -hydrogenase active site, which is composed of Ni and Fe particles coordinated with cysteine residues, cyanide and carbon monoxide. <ref>Chan, K.-H., Lee, K.-M., & Wong, K.-B. (2012). Interaction between Hydrogenase Maturation Factors HypA and HypB Is Required for [NiFe]-Hydrogenase Maturation. PLOS ONE, 7(2), e32592.</ref> It is the most central component of our intracellular conversion of nickel ions. On its surface, oxidation and reduction of hydrogen gas happens alternately according to different oxygen status.
  
 +
The rest of the subunits may work together to ensure that the hydrogenase can assemble and function well. It's worth noting that hypA and hypB can cooperate to precisely guide and insert the nickel ions into the hydrogenase catalytic center.
 
===Characterization===
 
===Characterization===
  

Revision as of 11:42, 24 September 2024


csoS operon

contributed by Fudan iGEM 2023

Introduction

The Ni-Fe hydrogenase we use is an enzyme that functions in vivo bidirectionally for NAD+ reduction and NADH oxidation coupled to H2 uptake and H2 production, respectively. [1] In our design, the Ni-Fe hydrogenase works mainly to restore the nickel to a zero valence, which can help reduce nickel toxicity and collect nickel particles.

Usage and Biology

The Ni-Fe hydrogenase is made up of six major and three auxiliary subunits. The former includes hoxF, hoxU, hoxY, hoxH, hoxW and hoxI, while the latter includes hypA, hypB and hypF.

The hoxF and the hoxU form the module of NADH dehydrogenase. The hoxF is a hydrogenase subunit responsible for electron transport. The most important group in hoxF is FMN-b, which has the ability of switching electron. Under anaerobic conditions, NADH is oxidized to NAD+ on the surface of hoxF subunit. In the meanwhile, the electrons generated in this reaction travel through a series of processes to the hoxH, completing the reduction of the hydrogen ion. Under aerobic conditions, NAD+ is reduced to NADH on the surface of the hoxF subunit. The electron transferring is contrary to former. [2] The hoxU houses a 2Fe-2S cluster and is responsible for the role of conducting electrons between hoxH and hoxF. [3]

The hoxY and the hoxH form the module of catalytic center.The hoxY houses a [4Fe-4S] cluster of the site, and an FMN group (FMN-a) near the Ni-Fe site in the hoxH. It is also responsible for the role of conducting electrons between hoxH and hoxF.[4] The most important site in hoxH is the [NiFe] -hydrogenase active site, which is composed of Ni and Fe particles coordinated with cysteine residues, cyanide and carbon monoxide. [5] It is the most central component of our intracellular conversion of nickel ions. On its surface, oxidation and reduction of hydrogen gas happens alternately according to different oxygen status.

The rest of the subunits may work together to ensure that the hydrogenase can assemble and function well. It's worth noting that hypA and hypB can cooperate to precisely guide and insert the nickel ions into the hydrogenase catalytic center.

Characterization

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 133
    Illegal NotI site found at 6599
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 291
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 2805
    Illegal AgeI site found at 799
    Illegal AgeI site found at 1750
    Illegal AgeI site found at 2431
    Illegal AgeI site found at 4933
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal SapI site found at 191


References

  1. Teramoto, H., Shimizu, T., Suda, M., & Inui, M. (2022). Hydrogen production based on the heterologous expression of NAD+-reducing [NiFe]-hydrogenase from Cupriavidus necator in different genetic backgrounds of Escherichia coli strains. International Journal of Hydrogen Energy, 47(52), 22010–22021.
  2. Löscher, S., Burgdorf, T., Zebger, I., Hildebrandt, P., Dau, H., Friedrich, B., & Haumann, M. (2006). Bias from H2 Cleavage to Production and Coordination Changes at the Ni−Fe Active Site in the NAD+-Reducing Hydrogenase from Ralstonia eutropha. Biochemistry, 45(38), 11658–11665.
  3. Löscher, S., Burgdorf, T., Zebger, I., Hildebrandt, P., Dau, H., Friedrich, B., & Haumann, M. (2006). Bias from H2 Cleavage to Production and Coordination Changes at the Ni−Fe Active Site in the NAD+-Reducing Hydrogenase from Ralstonia eutropha. Biochemistry, 45(38), 11658–11665.
  4. Löscher, S., Burgdorf, T., Zebger, I., Hildebrandt, P., Dau, H., Friedrich, B., & Haumann, M. (2006). Bias from H2 Cleavage to Production and Coordination Changes at the Ni−Fe Active Site in the NAD+-Reducing Hydrogenase from Ralstonia eutropha. Biochemistry, 45(38), 11658–11665.
  5. Chan, K.-H., Lee, K.-M., & Wong, K.-B. (2012). Interaction between Hydrogenase Maturation Factors HypA and HypB Is Required for [NiFe]-Hydrogenase Maturation. PLOS ONE, 7(2), e32592.