Difference between revisions of "Part:BBa K4960021"

(Profile)
 
(18 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
 
__NOTOC__
 
__NOTOC__
<partinfo>BBa_K4960021 short</partinfo>
+
<partinfo>BBa_K4960021 short</partinfo><br>
 +
enable the PVC-mediated alteration of mammalian cell energy expenditure
 
===Profile===
 
===Profile===
Name: Pdp1NTD-3*GGSGG-EGFP-2*GGSGG- UCP1<br>
+
Name: Engineered Mitochondrial Uncoupler Pdp1NTD-EGFP-UCP1<br>
 
Base Pairs: 1917 bp<br>
 
Base Pairs: 1917 bp<br>
Origin: Photorhabdus, Aequorea Victoria, Homo Sapiens<br>
+
Origin: <i>Photorhabdus, Aequorea Victoria, Homo Sapiens</i><br>
 +
Properties:enable the PVC-mediated alteration of mammalian cell energy expenditure
  
 
<!-- Add more about the biology of this part here-->
 
 
===Usage and Biology===
 
===Usage and Biology===
Our project aims to design a system that can effectively deliver the uncoupling protein UCP1 into adipocytes via PVCs. For this, we are using BBa_K4960022 as the basic part to enables the delivery of UCP1 by serving as the payload for the PVC delivery system. UCP1 is a naturally occurring mitochondrial uncoupler protein found in brown adipose tissue of mammals. It works by transporting protons across the mitochondrial membrane, inducing a process of mitochondrial uncoupling that disconnects oxygen consumption from ATP synthesis. This uncoupling process results in the dissipation of energy in the form of heat, leading to an increase in energy expenditure and basal metabolic rate.
+
UCP1 is a key mitochondrial uncoupling protein in mammalian cells that regulates cellular energy expenditure and thermogenesis[1]. This part demonstrates a UCP1-based synthetic mitochondrial uncoupler that is compatable to the PVC delivery system (see the Description page of iGEM23_NUDT-CHINA wiki for more information about the PVC system). In mammalian cells, this part would be translocated into mitochondria and works as a proton transporter that disconnects oxygen consumption from ATP synthesis, thereby dissipates energy in the form of heat, leading to an increase in energy expenditure and basal metabolic rate.[2]
<!-- -->
+
  
 
===Special Design===
 
===Special Design===
During the testing of the BBa_K4960021 part, it was discovered that the interaction between the Pdp1NTD domain and UCP1 (as highlighted in the red box in '''Figure 1a''') could potentially alter the local protein structure and impact the translocation and function of UCP1. To address this issue, we used AlphaFold2 to predict some of the possible structures and found that we could resolve this problem by swapping UCP1 and EGFP (as shown in '''Figure 1b'''). Consequently, we designed this part by connecting Pdp1NTD to the N-terminus EGFP and a UCP1 to the C-terminus (as depicted in '''Figure 1c''').
+
This part includes a Pdp1NTD domain to ensure the compatability with the PVC delivery system, an EGFP domain for visualization and improving the protein production in E.coli, and a UCP1 mitochondrial uncoupling domain to enable the functionality. In [[Part:BBa_K4960022]], we have demonstrated that the Pdp1NTD-UCP1-EGFP configuration failed to effectively localize into mitochondria, possibly due to an unintended interaction between the Pdp1NTD domain and UCP1 (as highlighted in the red box in '''Figure 1a'''). To address this issue, we used AlphaFold2 to predict some of the possible structures and found that we could resolve this problem by swapping UCP1 and EGFP (as shown in '''Figure 1b'''). Consequently, we designed this part by connecting Pdp1NTD to the N-terminus EGFP and a UCP1 to the C-terminus (as depicted in '''Figure 1c''').
 
                                                          
 
                                                          
 
<html>
 
<html>
Line 24: Line 23:
 
</html>
 
</html>
  
'''Figure 1. Updated schematic diagram of design ideas.''' In the process of designing part, we switched the original sequence of EGFP and UCP1, and carried out the same experimental treatment as a new group of experimental groups, hoping to solve the problems encountered befor
+
 
 +
'''Figure 1. AlphaFold2 prediction of protein structure and updated schematic diagram of design ideas.''' (a). AlphaFold2 prediction of Pdp1NTD-UCP1-EGFP protein structure. The unexpected interaction between SepC and UCP1 is labeled in a red box. (b). AlphaFold2 prediction of Pdp1NTD-EGFP -UCP1 protein structure. (c). Updated schematic diagram of design ideas. In the process of designing part, we switched the original sequence of EGFP and UCP1, and carried out the same experimental treatment as a new group of experimental groups, hoping to solve the problems encountered before.<br>
  
 
===Sequence and Feature===
 
===Sequence and Feature===
Line 34: Line 34:
 
'''Methods'''<br>
 
'''Methods'''<br>
  
To validate the function of this part, we constructed pNC088, a CMV-driven Pdp1NTD-EGFP-UCP1 expressing plasmid. We transfected HEK-293T cells with pNC088 and observed the cellular localization of the fusion protein 48 hours post-transcription by widefield fluorescent microscopy and live-cell confocal imaging. We also analyzed the glucose consumption of the transfected cells by measuring the glucose levels in the culture medium. This analysis represented the level of cellular energy expenditure. We compared the results with those of the control group cells transfected with pcDNA3.1(+) vector only.
+
To validate the function of this part, we constructed pNC088, a CMV-driven plasmid expressing this part. We transfected HEK-293T cells with pNC088 and observed the cellular localization of the fusion protein 48 hours post-transcription by widefield fluorescent microscopy and live-cell confocal imaging. We also analyzed the glucose consumption of the transfected cells by measuring the glucose levels in the culture medium. This analysis represented the level of cellular energy expenditure. We compared the results with those of the control group cells transfected with pcDNA3.1(+) vector only.<br>
  
 +
'''Results'''<br>
 
The results of both wide-field fluorescent imaging ('''Figure 2a''') and live-cell confocal imaging ('''Figure 2b''') indicated highly specific colocalization of Pdp1NTD-EGFP-UCP1 signal with mitochondria markers (MTS-mcherry, '''Figure 2c'''). Furthermore, cells that were transfected with pNC088 demonstrated a significantly higher glucose consumption rate when compared to cells transfected with the pcDNA3.1(+) vector ('''Figure 2c'''). This suggests that the energy consumption in these cells was significantly improved.
 
The results of both wide-field fluorescent imaging ('''Figure 2a''') and live-cell confocal imaging ('''Figure 2b''') indicated highly specific colocalization of Pdp1NTD-EGFP-UCP1 signal with mitochondria markers (MTS-mcherry, '''Figure 2c'''). Furthermore, cells that were transfected with pNC088 demonstrated a significantly higher glucose consumption rate when compared to cells transfected with the pcDNA3.1(+) vector ('''Figure 2c'''). This suggests that the energy consumption in these cells was significantly improved.
 
<html>
 
<html>
  
 
<figure class="figure">
 
<figure class="figure">
<img src="https://static.igem.wiki/teams/4960/wiki/21-2.jpg" class="figure-img img-fluid rounded"  height="300px">
+
<img src="https://static.igem.wiki/teams/4960/wiki/21-2.jpg" class="figure-img img-fluid rounded"  height="225px">
  
 
</figure>
 
</figure>
  
 
</html>
 
</html>
 +
'''Figure 2. Functionality of UCP1-based Payload Protein in HEK-293T Cells.<br>
 +
(a). Localization Pdp1NTD-EGFP-UCP1 in HEK-293T cells. Cells were transfected with pNC088 (PCMV-Pdp1NTD-EGFP-UCP1). (b). Cells were co-transfected with MTS-mcherry and PNC088. Photos were taken 48 h post transfection, scale bar: 100μm for wide-field microscopy and 10 μm for confocal microscopy. Data are representative images of 3 independent experiments. (c). Charactrization of cellular metabolism in HEK-293T cells transfected with either pNC088 or pcDNA3.1(+). Glucose concentration in the cell culture medium was measured 48 h after transfection; data shows mean±SD, n=3 independent experiments.<br>
  
'''Figure 2a. Localization Pdp1NTD-EGFP-UCP1 in HEK-293T cells.''' Cells were transfected with pNC088 (PCMV-Pdp1NTD-EGFP-UCP1).
+
'''Compatibility with the PVC system'''
  
'''Figure 2b. Cells were co-transfected with MTS-mcherry and PNC088.''' Photos were taken 48 h post transfection, scale bar: 100μm for wide-field microscopy and 10 μm for confocal microscopy. Data are representative images of 3 independent experiments.
+
We have also tested the compatability of this part with the PVC system using the composite [[part:BBa_K4960031]]. Please refer to the functional validation of [[Part:BBa_K4960031]] for experimental design and detailed results.
+
'''Figure 2c. Charactrization of cellular metabolism in HEK-293T cells transfected with either pNC088 or pcDNA3.1(+).''' Glucose concentration in the cell culture medium was measured 48 h after transfection; data shows mean±SD, n=3 independent experiments.
+
  
<partinfo>BBa_K4960021 parameters</partinfo>
 
<!-- -->
 
  
 
===References===
 
===References===
[1] Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W. Reversal of obesity by targeted ablation of adipose tissue. Nat Med. 2004 Jun;10(6):625-32.
+
[1] Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W. Reversal of obesity by targeted ablation of adipose tissue. Nat Med. 2004 Jun;10(6):625-32.<br>
 +
[2]Kreitz J, Friedrich MJ, Guru A, Lash B, Saito M, Macrae RK, Zhang F. Programmable protein delivery with a bacterial contractile injection system. Nature. 2023 Apr;616(7956):357-364. doi: 10.1038/s41586-023-05870-7. Epub 2023 Mar 29.

Latest revision as of 14:12, 12 October 2023


Engineered Mitochondrial Uncoupler Pdp1NTD-EGFP-UCP1
enable the PVC-mediated alteration of mammalian cell energy expenditure

Profile

Name: Engineered Mitochondrial Uncoupler Pdp1NTD-EGFP-UCP1
Base Pairs: 1917 bp
Origin: Photorhabdus, Aequorea Victoria, Homo Sapiens
Properties:enable the PVC-mediated alteration of mammalian cell energy expenditure

Usage and Biology

UCP1 is a key mitochondrial uncoupling protein in mammalian cells that regulates cellular energy expenditure and thermogenesis[1]. This part demonstrates a UCP1-based synthetic mitochondrial uncoupler that is compatable to the PVC delivery system (see the Description page of iGEM23_NUDT-CHINA wiki for more information about the PVC system). In mammalian cells, this part would be translocated into mitochondria and works as a proton transporter that disconnects oxygen consumption from ATP synthesis, thereby dissipates energy in the form of heat, leading to an increase in energy expenditure and basal metabolic rate.[2]

Special Design

This part includes a Pdp1NTD domain to ensure the compatability with the PVC delivery system, an EGFP domain for visualization and improving the protein production in E.coli, and a UCP1 mitochondrial uncoupling domain to enable the functionality. In Part:BBa_K4960022, we have demonstrated that the Pdp1NTD-UCP1-EGFP configuration failed to effectively localize into mitochondria, possibly due to an unintended interaction between the Pdp1NTD domain and UCP1 (as highlighted in the red box in Figure 1a). To address this issue, we used AlphaFold2 to predict some of the possible structures and found that we could resolve this problem by swapping UCP1 and EGFP (as shown in Figure 1b). Consequently, we designed this part by connecting Pdp1NTD to the N-terminus EGFP and a UCP1 to the C-terminus (as depicted in Figure 1c).


Figure 1. AlphaFold2 prediction of protein structure and updated schematic diagram of design ideas. (a). AlphaFold2 prediction of Pdp1NTD-UCP1-EGFP protein structure. The unexpected interaction between SepC and UCP1 is labeled in a red box. (b). AlphaFold2 prediction of Pdp1NTD-EGFP -UCP1 protein structure. (c). Updated schematic diagram of design ideas. In the process of designing part, we switched the original sequence of EGFP and UCP1, and carried out the same experimental treatment as a new group of experimental groups, hoping to solve the problems encountered before.

Sequence and Feature


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 1258
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 235
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

Functional test

Methods

To validate the function of this part, we constructed pNC088, a CMV-driven plasmid expressing this part. We transfected HEK-293T cells with pNC088 and observed the cellular localization of the fusion protein 48 hours post-transcription by widefield fluorescent microscopy and live-cell confocal imaging. We also analyzed the glucose consumption of the transfected cells by measuring the glucose levels in the culture medium. This analysis represented the level of cellular energy expenditure. We compared the results with those of the control group cells transfected with pcDNA3.1(+) vector only.

Results
The results of both wide-field fluorescent imaging (Figure 2a) and live-cell confocal imaging (Figure 2b) indicated highly specific colocalization of Pdp1NTD-EGFP-UCP1 signal with mitochondria markers (MTS-mcherry, Figure 2c). Furthermore, cells that were transfected with pNC088 demonstrated a significantly higher glucose consumption rate when compared to cells transfected with the pcDNA3.1(+) vector (Figure 2c). This suggests that the energy consumption in these cells was significantly improved.

Figure 2. Functionality of UCP1-based Payload Protein in HEK-293T Cells.
(a). Localization Pdp1NTD-EGFP-UCP1 in HEK-293T cells. Cells were transfected with pNC088 (PCMV-Pdp1NTD-EGFP-UCP1). (b). Cells were co-transfected with MTS-mcherry and PNC088. Photos were taken 48 h post transfection, scale bar: 100μm for wide-field microscopy and 10 μm for confocal microscopy. Data are representative images of 3 independent experiments. (c). Charactrization of cellular metabolism in HEK-293T cells transfected with either pNC088 or pcDNA3.1(+). Glucose concentration in the cell culture medium was measured 48 h after transfection; data shows mean±SD, n=3 independent experiments.

Compatibility with the PVC system

We have also tested the compatability of this part with the PVC system using the composite part:BBa_K4960031. Please refer to the functional validation of Part:BBa_K4960031 for experimental design and detailed results.


References

[1] Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W. Reversal of obesity by targeted ablation of adipose tissue. Nat Med. 2004 Jun;10(6):625-32.
[2]Kreitz J, Friedrich MJ, Guru A, Lash B, Saito M, Macrae RK, Zhang F. Programmable protein delivery with a bacterial contractile injection system. Nature. 2023 Apr;616(7956):357-364. doi: 10.1038/s41586-023-05870-7. Epub 2023 Mar 29.