Difference between revisions of "Part:BBa K4990007"

(What can it do?)
 
(28 intermediate revisions by 3 users not shown)
Line 8: Line 8:
 
===Usage in short===
 
===Usage in short===
 
<b>You can use it to target coloretal cancer!</b>
 
<b>You can use it to target coloretal cancer!</b>
 +
 
<!-- Add more about the biology of this part here
 
<!-- Add more about the biology of this part here
 
===Usage and Biology===
 
===Usage and Biology===
Line 14: Line 15:
 
<span class='h3bb'>Sequence and Features</span>
 
<span class='h3bb'>Sequence and Features</span>
 
<partinfo>BBa_K4990007 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K4990007 SequenceAndFeatures</partinfo>
 
 
===What you need to know!===
 
===What you need to know!===
2006年Tjalsma通过Highly accurate tandem MS方法,找到了一种蛋白Histone-like protein A(HlpA),发现它联系Streptococcus bovis和结直肠癌的桥梁,并推测S.bovis正是通过HlpA与结直肠癌细胞表面的heparan sulfate-proteoglycans(HSPG)结合,介导的S.bovis定植于结直肠癌[1]。
 
  
2009年Boleij证明了Streptococcus gallolyticus通过HlpA于结直肠癌细胞表面的HSPG结合[2]
+
In 2006, Tjalsma employed the Highly accurate tandem MS method to identify a protein named Histone-like protein A (HlpA). This discovery highlighted a bridge between Streptococcus bovis and colorectal cancer. It is postulated that S. bovis establishes a bond with colorectal cancer cell surfaces via heparan sulfate-proteoglycans (HSPG) mediated by HlpA [1].
  
2016年O'Neil得到了Hlp的晶体结构,指示Hlp为类似蟹钳的结构,钳子部分的碱性氨基酸可以与DNA结合,同时也可以与肝素结合[3]
+
By 2009, Boleij confirmed that Streptococcus gallolyticus binds to the surface of colorectal cancer cells through HlpA interacting with HSPG [2].
  
2018年Chun Loong Ho利用HlpA与HSPG的结合,构建了一种可以靶向结直肠癌的工程大肠杆菌,拉开了HlpA靶向系统的序幕[4]
+
In 2016, O'Neil unveiled the crystal structure of Hlp, revealing its crab-claw-like architecture. The claw section's basic amino acids can bind with DNA and simultaneously with heparin [3].
  
2022年iGEM22_LZU-CHINA 团队,通过合成生物学构建了靶向结直肠癌的大肠杆菌,方法为HlpA靶向肿瘤细胞表面的HSPG[5]
+
In 2018, Chun Loong Ho harnessed the binding of HlpA to HSPG to construct an engineered Escherichia coli that specifically targets colorectal cancer, thus marking the commencement of the HlpA targeting system [4].
  
2023年Tang构建了利用HlpA靶向,Azurin杀伤的工程益生菌,并在结直肠癌小鼠中展现出不错的疗效[6]
+
In 2022, the iGEM22_LZU-CHINA team, utilizing synthetic biology, developed an Escherichia coli that targets colorectal cancer, employing the method of HlpA targeting tumor cell surface HSPG [5].
 +
 
 +
By 2023, Tang engineered a probiotic using HlpA targeting and Azurin-induced cytotoxicity, demonstrating promising therapeutic efficacy in colorectal cancer mice models [6].
  
  
Line 36: Line 37:
 
               </figure>
 
               </figure>
 
</html>
 
</html>
HlpA(Histone-like protein A)正如其名,它能和组蛋白一样结合DNA。它整体形态如同一个蟹钳,能够利用其丝带般的β折叠区与DNA小沟非特异性紧密结合,which leads to significant DNA bending, DNA compaction and negative supercoiling。而S.boivs会通过一种未知的机制将其分泌出胞外,作为anchorless protein,是感染时体液免疫系统的靶标,通过连接细菌lipoteichoic acid(LTA)和结肠上皮细胞上的HSPG介导细菌粘附于结肠肿瘤细胞。
+
HlpA, as suggested by its name "Histone-like protein A", binds to DNA similar to histones. Its overall morphology resembles a crab claw, allowing it to non-specifically and tightly bind to the minor groove of DNA using its ribbon-like β-fold region. This results in significant DNA bending, DNA compaction, and negative supercoiling. S. bovis, through an unknown mechanism, secretes it extracellularly, acting as an anchorless protein. It becomes a target for the humoral immune system during infections. By linking bacterial lipoteichoic acid (LTA) and HSPG on colon epithelial cells, it mediates bacterial adhesion to colon tumor cells.
  
 
<b>Therefore, HlpA possesses dual capabilities: 1. Targeting colorectal cancer and 2. Non-specifically binding to DNA chains.</b>
 
<b>Therefore, HlpA possesses dual capabilities: 1. Targeting colorectal cancer and 2. Non-specifically binding to DNA chains.</b>
Line 43: Line 44:
 
Here is the structure of HlpA monomer and homodimer.
 
Here is the structure of HlpA monomer and homodimer.
  
Two helical segments from each monomeric subunit constitute an α-helical ‘body’ with two protruding β-ribbon ‘arms’ , which extend to bind the DNA helix. These DNA-binding β-ribbons are largely disordered in the absence of DNA
+
Two helical segments from each monomeric subunit constitute an α-helical ‘body’ with two protruding β-ribbon ‘arms’ , which extend to bind the DNA helix. These DNA-binding β-ribbons are largely disordered in the absence of DNA.
  
 
<html>
 
<html>
Line 54: Line 55:
  
 
===What can it do?===
 
===What can it do?===
HlpA单体被用于设计融合蛋白,它可以与结直肠癌细胞表面的HSPG进行结合。因此,如果你想用蛋白靶向结直肠癌细胞,你就可以设计一个融合蛋白,将HlpA挂在融合蛋白的一端。如果你想让细胞靶向结直肠癌细胞,则可以为你的底盘细胞量身定制一种包含HlpA的膜蛋白,通过表面展示技术将HlpA表达在地盘细胞表面,它就可以用于靶向结直肠癌细胞[4-6]
+
The HlpA monomer has been used in designing fusion proteins, as it can bind to HSPG on the surface of colorectal cancer cells. Hence, if you wish to target colorectal cancer cells with a protein, you can design a fusion protein attaching HlpA to one end. If you aim to make a cell target colorectal cancer cells, you can custom design a membrane protein containing HlpA for your chassis cell. Through surface display technology, expressing HlpA on the chassis cell surface would allow it to target colorectal cancer cells [4-6].
 +
 
 +
<html>
 +
<img src="https://static.igem.wiki/teams/4990/wiki/registry/b-cancer4.png" width="450" >
 +
</html>
 +
 
 +
Furthermore, HlpA bears a resemblance to the HU protein of Escherichia coli. The E. coli HU heterodimer non-specifically binds to double-stranded DNA, having a higher affinity for distorted DNA structures, which induces significant DNA bending, DNA compaction, and the formation of negative supercoils. HlpA's binding to DNA is non-specific and displays a preference for AT-rich DNA [3].
 +
 
 +
<html>
 +
<img src="https://static.igem.wiki/teams/4990/wiki/registry/b-dna.png" width="450" >
 +
</html>
 +
 
 +
Lastly, it's worth noting that these HlpA monomers can self-assemble into homodimers. Their interconnection exhibits immense affinity. Therefore, in our dual-targeting peptide-related experiments, a significant dimerization phenomenon was observed.
 +
 
 +
<html>
 +
<img src="https://static.igem.wiki/teams/4990/wiki/registry/dual2.gif" width="350" >
 +
</html>
 +
 
 +
===How does it work?===
 +
Examination of the DNA-binding region of Hlp revealed that this area is primarily composed of positively charged residues that form a pocket to accommodate DNA binding. The specific residues that comprise the DNA-binding pocket are depicted in Figure below. It should be noted that the side-chain electron density for Arg56, Lys60, Lys71 and Lys73 of subunit A and Arg54, Lys76 and Lys81 of subunit B was partially disordered and could not be traced in the electrondensity maps. Therefore, the side chains were modeled in idealized rotamer positions for the electrostatic surface calculations.[3]
 +
 
 +
<html>
 +
<img src="https://static.igem.wiki/teams/4990/wiki/registry/hlpa-r.png" width="450" >
 +
</html>
 +
 
 +
 
 +
 
 +
we tested the interaction between HlpA and HSPG at cellular level.The entire cellular lysate obtained from cells that expressed the HlpA-EGFP fusion protein was utilised. To remove adhesion and allow full interaction between the tumor cells and fusion protein, trypsin was applied to the cells. The trypsin was washed off with PBS and then co-incubation for a period of 6 hours. Following the incubation, the sample was resuspended in PBS and centrifuged thrice to eliminate weakly-bound fusion proteins from the solution. The results indicate that the HlpA-EGFP fusion protein accumulates abundantly and intensely on the surface of tumour cells, emitting a green fluorescence.
 +
 
 +
 
 +
<html>
 +
<img src="https://static.igem.wiki/teams/4990/wiki/registry/3-4.jpg" width="750" >
 +
</html>
 +
 
 +
Co-incubation of HlpA-EGFP and sw480.
 +
 
 +
 
 +
 
 +
 
  
除此之外,HlpA类似于大肠杆菌的HU蛋白。大肠杆菌HU异源二聚体与双链DNA非特异性结合,与结构扭曲的DNA具有更高的亲和力,从而导致显著的DNA弯曲、DNA压实和负超螺旋的形成。HlpA与DNA的结合具有非特异性的,并且对富含AT的DNA具有偏好性[3]。
 
  
最后,不得不提到的是,这些HlpA单体可以自组装为同源二聚体,它们之间的结合具有巨大的亲和力。因此,在我们的双靶向肽相关实验中,观察到了显著的二聚化现象。
 
  
 
===Referrence===
 
===Referrence===
Line 71: Line 108:
 
[5]https://2022.igem.wiki/lzu-china/
 
[5]https://2022.igem.wiki/lzu-china/
  
[6]
+
[6]Tang, H., Zhou, T., Jin, W., Zong, S., Mamtimin, T., Salama, E. S., ... & Li, X. (2023). Tumor-targeting engi
 
+
<!-- Uncomment this to enable Functional Parameter display
+
===Functional Parameters===
+
<partinfo>BBa_K4990007 parameters</partinfo>
+
<!-- -->
+

Latest revision as of 14:03, 12 October 2023


HlpA

Usage in short

You can use it to target coloretal cancer!

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 231
  • 1000
    COMPATIBLE WITH RFC[1000]

What you need to know!

In 2006, Tjalsma employed the Highly accurate tandem MS method to identify a protein named Histone-like protein A (HlpA). This discovery highlighted a bridge between Streptococcus bovis and colorectal cancer. It is postulated that S. bovis establishes a bond with colorectal cancer cell surfaces via heparan sulfate-proteoglycans (HSPG) mediated by HlpA [1].

By 2009, Boleij confirmed that Streptococcus gallolyticus binds to the surface of colorectal cancer cells through HlpA interacting with HSPG [2].

In 2016, O'Neil unveiled the crystal structure of Hlp, revealing its crab-claw-like architecture. The claw section's basic amino acids can bind with DNA and simultaneously with heparin [3].

In 2018, Chun Loong Ho harnessed the binding of HlpA to HSPG to construct an engineered Escherichia coli that specifically targets colorectal cancer, thus marking the commencement of the HlpA targeting system [4].

In 2022, the iGEM22_LZU-CHINA team, utilizing synthetic biology, developed an Escherichia coli that targets colorectal cancer, employing the method of HlpA targeting tumor cell surface HSPG [5].

By 2023, Tang engineered a probiotic using HlpA targeting and Azurin-induced cytotoxicity, demonstrating promising therapeutic efficacy in colorectal cancer mice models [6].


control
Figure A:Crystal structure of HlpA(O'Neil 2016) Figure B:Engineered EcN treat CRC(Chun 2018)
HlpA, as suggested by its name "Histone-like protein A", binds to DNA similar to histones. Its overall morphology resembles a crab claw, allowing it to non-specifically and tightly bind to the minor groove of DNA using its ribbon-like β-fold region. This results in significant DNA bending, DNA compaction, and negative supercoiling. S. bovis, through an unknown mechanism, secretes it extracellularly, acting as an anchorless protein. It becomes a target for the humoral immune system during infections. By linking bacterial lipoteichoic acid (LTA) and HSPG on colon epithelial cells, it mediates bacterial adhesion to colon tumor cells.

Therefore, HlpA possesses dual capabilities: 1. Targeting colorectal cancer and 2. Non-specifically binding to DNA chains.

What is it?

Here is the structure of HlpA monomer and homodimer.

Two helical segments from each monomeric subunit constitute an α-helical ‘body’ with two protruding β-ribbon ‘arms’ , which extend to bind the DNA helix. These DNA-binding β-ribbons are largely disordered in the absence of DNA.

What can it do?

The HlpA monomer has been used in designing fusion proteins, as it can bind to HSPG on the surface of colorectal cancer cells. Hence, if you wish to target colorectal cancer cells with a protein, you can design a fusion protein attaching HlpA to one end. If you aim to make a cell target colorectal cancer cells, you can custom design a membrane protein containing HlpA for your chassis cell. Through surface display technology, expressing HlpA on the chassis cell surface would allow it to target colorectal cancer cells [4-6].

Furthermore, HlpA bears a resemblance to the HU protein of Escherichia coli. The E. coli HU heterodimer non-specifically binds to double-stranded DNA, having a higher affinity for distorted DNA structures, which induces significant DNA bending, DNA compaction, and the formation of negative supercoils. HlpA's binding to DNA is non-specific and displays a preference for AT-rich DNA [3].

Lastly, it's worth noting that these HlpA monomers can self-assemble into homodimers. Their interconnection exhibits immense affinity. Therefore, in our dual-targeting peptide-related experiments, a significant dimerization phenomenon was observed.

How does it work?

Examination of the DNA-binding region of Hlp revealed that this area is primarily composed of positively charged residues that form a pocket to accommodate DNA binding. The specific residues that comprise the DNA-binding pocket are depicted in Figure below. It should be noted that the side-chain electron density for Arg56, Lys60, Lys71 and Lys73 of subunit A and Arg54, Lys76 and Lys81 of subunit B was partially disordered and could not be traced in the electrondensity maps. Therefore, the side chains were modeled in idealized rotamer positions for the electrostatic surface calculations.[3]


we tested the interaction between HlpA and HSPG at cellular level.The entire cellular lysate obtained from cells that expressed the HlpA-EGFP fusion protein was utilised. To remove adhesion and allow full interaction between the tumor cells and fusion protein, trypsin was applied to the cells. The trypsin was washed off with PBS and then co-incubation for a period of 6 hours. Following the incubation, the sample was resuspended in PBS and centrifuged thrice to eliminate weakly-bound fusion proteins from the solution. The results indicate that the HlpA-EGFP fusion protein accumulates abundantly and intensely on the surface of tumour cells, emitting a green fluorescence.


Co-incubation of HlpA-EGFP and sw480.




Referrence

[1]Tjalsma H, Schöller‐Guinard M, Lasonder E, et al. Profiling the humoral immune response in colon cancer patients: diagnostic antigens from Streptococcus bovis[J]. International journal of cancer, 2006, 119(9): 2127-2135.

[2]Boleij A, Schaeps R M J, de Kleijn S, et al. Surface-exposed histone-like protein a modulates adherence of Streptococcus gallolyticus to colon adenocarcinoma cells[J]. Infection and immunity, 2009, 77(12): 5519-5527.

[3]O'Neil P, Lovell S, Mehzabeen N, et al. Crystal structure of histone-like protein from Streptococcus mutans refined to 1.9 Å resolution[J]. Acta Crystallographica Section F: Structural Biology Communications, 2016, 72(4): 257-262.

[4]Ho C L, Tan H Q, Chua K J, et al. Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention[J]. Nature biomedical engineering, 2018, 2(1): 27-37.

[5]https://2022.igem.wiki/lzu-china/

[6]Tang, H., Zhou, T., Jin, W., Zong, S., Mamtimin, T., Salama, E. S., ... & Li, X. (2023). Tumor-targeting engi