Difference between revisions of "Part:BBa K4579046"
(One intermediate revision by the same user not shown) | |||
Line 38: | Line 38: | ||
<h1>Characterization</h1> | <h1>Characterization</h1> | ||
− | + | To characterize this composite, we transformed our chassis with both the microcin expression plasmid and the secretion system plasmid pSK01 (Kim et al., 2023). We then assessed the microcin's effectiveness against its target using Zone of Inhibition assays in which the transformed chassis or 'predator' strain was plated on agar containing the target pathogenic strain—or 'prey' strain. The results of these Zone of Inhibition assays for this microcin are shown below. | |
<html><center><img src=https://static.igem.wiki/teams/4579/wiki/mccv-dh5a-1.jpg style="width:700px;height:auto;"></center></html> | <html><center><img src=https://static.igem.wiki/teams/4579/wiki/mccv-dh5a-1.jpg style="width:700px;height:auto;"></center></html> | ||
Line 46: | Line 46: | ||
<html><center><img src=https://static.igem.wiki/teams/4579/wiki/mccv-w3110-aa-1.jpg style="width:700px;height:auto;"></center></html> | <html><center><img src=https://static.igem.wiki/teams/4579/wiki/mccv-w3110-aa-1.jpg style="width:700px;height:auto;"></center></html> | ||
− | <center><b>Figure | + | <center><b>Figure 2.</b> <i>Zone of inhibition plate with E. coli W3110 lawn as ‘prey’ against E.coli W3110 strain containing MccV and associated immunity protein expressing plasmid along with a secretion system. The top left spot is our modular microcin assembly and the one below it is a positive control that effectively secretes MccV. The controls include strain expressing the microcin and empty chassis </i></center> |
Latest revision as of 12:39, 12 October 2023
Constitutive MccV + Cvi expression plasmid
Introduction
The 2023 UT Austin iGEM Team’s modular microcin expression parts collection includes parts necessary for engineering a bacterial chassis to secrete microcins, a type of small antimicrobial peptide. Our team has specifically designed parts to engineer a modular two-plasmid system that facilitates extracellular secretion of microcins by the chassis. One plasmid contains the microcin with a signal peptide sequence that indicates to the cell that the microcin is to be secreted. The other plasmid (pSK01) is from the literature (Kim et al., 2023) and contains genes for the proteins CvaA and CvaB, which are necessary to secrete small peptides using the E. coli microcin V (MccV) type I secretion system (T1SS) shown in Figure 2 of our Project Description.
Our parts collection includes a a selection of promoter (Type 2), coding sequence (Type 3), and terminator/regulatory gene (Type 4) parts that can be easily assembled to express microcins either constitutively or under inducible control. This allows for the modular engineering of microcin expression plasmids containing various microcins that can undergo extracellular secretion when used in conjunction with the secretion system plasmid pSK01.
Our basic and composite parts follow the Bee Toolkit/Yeast Toolkit standard of Golden Gate assembly (Lee et al., 2015; Leonard et al., 2018). Our assembly method involves the use of BsmBI digestion-ligation to create basic parts which can then be further digested with BsaI and ligated to form composite parts. The BTK/YTK standard includes part type-specific prefix and suffix overhangs generated by BsaI for each part, and these overhangs are NOT included in their sequences in the registry. For reference, our standard’s part type-specific overhangs are listed in Figure 2 on our Parts page.
Categorization
Basic parts
- Promoters (Type 2) – Seven inducible promoters selected due to their relatively high dynamic range (Meyer et al., 2019) and apparent functionality in a variety of Proteobacteria (Schuster & Reisch, 2021), and one constitutive CP25 promoter (Leonard et al., 2018).
- Coding Sequences (Type 3) – Signal peptide + microcin fusion coding sequences, a green fluorescent protein gene, and secretion system genes cvaA and cvaB which are together referred to as CvaAB.
- Terminators/Regulatory Genes (Type 4) – An rpoC terminator plus a collection of seven regulatory genes, each associated with one of our seven inducible promoters.
Composite parts
- Constitutive Microcin Expression Assemblies - Assemblies of microcins (some with immunity proteins) with a constitutive CP25 promoter and rpoC terminator. These function alongside pSK01 in a two-plasmid secretion system, and we use these two-plasmid systems to assess if our novel microcins are effective inhibitors of pathogenic targets.
- Inducible GFP Expression Assemblies – Assemblies of GFP under the control of various inducible promoter systems. These were used to assess the dynamic range of our inducible promoter systems.
- Inducible Microcin Expression Assemblies – Assemblies of select microcins under the control of an inducible promoter system.
Usage and Biology
This is a Type 234 constitutive microcin expression composite part consisting of a CP25 promoter, the CvaC15 signal peptide, Mccv + Cvi, and an rpoC terminator part. MccV has demonstrated antimicrobial activity against E. coli, so it was chosen to use as a positive control microcin for our two-plasmid secretion assays. These assays allowed us to determine that our assembly schema is functional and applicable to other microcins, as this part produced a zone when tested in Zone of Inhibition assays.
Characterization
To characterize this composite, we transformed our chassis with both the microcin expression plasmid and the secretion system plasmid pSK01 (Kim et al., 2023). We then assessed the microcin's effectiveness against its target using Zone of Inhibition assays in which the transformed chassis or 'predator' strain was plated on agar containing the target pathogenic strain—or 'prey' strain. The results of these Zone of Inhibition assays for this microcin are shown below.
References
- Cole, T. J., Parker, J. K., Feller, A. L., Wilke, C. O., & Davies, B. W. (2022). Evidence for widespread class II microcins in Enterobacterales Genomes. Applied and Environmental Microbiology, 88(23), e01486-22.
- Kim, S. Y., Parker, J. K., Gonzalez-Magaldi, M., Telford, M. S., Leahy, D. J., & Davies, B. W. (2023). Export of Diverse and Bioactive Small Proteins through a Type I Secretion System. Applied and Environmental Microbiology, 89(5), e00335-23.
- Lee, M. E., DeLoache, W. C., Cervantes, B., & Dueber, J. E. (2015). A highly characterized yeast toolkit for modular, multipart assembly. ACS Synthetic Biology, 4(9), 975-986.
- Leonard, S. P., Perutka, J., Powell, J. E., Geng, P., Richhart, D. D., Byrom, M., Kar, S., Davies, B. W., Ellington, D. E., Moran, N. A., & Barrick, J. E. (2018). Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. ACS Synthetic Biology, 7(5), 1279-1290.
- Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J., & Voigt, C. A. (2019). Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nature Chemical Biology, 15(2), 196-204.
- Schuster, L. A., & Reisch, C. R. (2021). A plasmid toolbox for controlled gene expression across the Proteobacteria. Nucleic Acids Research, 49(12), 7189-7202.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]