Difference between revisions of "Part:BBa K4579050"

 
 
(One intermediate revision by one other user not shown)
Line 2: Line 2:
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K4579050 short</partinfo>
 
<partinfo>BBa_K4579050 short</partinfo>
 +
<h1>Introduction</h1>
 +
The 2023 UT Austin iGEM Team’s modular microcin expression parts collection includes parts necessary for engineering a bacterial chassis to secrete microcins, a type of small antimicrobial peptide. Our team has specifically designed parts to engineer a modular two-plasmid system that facilitates extracellular secretion of microcins by the chassis. One plasmid contains the microcin with a signal peptide sequence that indicates to the cell that the microcin is to be secreted. The other plasmid (pSK01) is from the literature (Kim et al., 2023) and contains genes for the proteins CvaA and CvaB, which are necessary to secrete small peptides using the <i>E. coli</i> microcin V (MccV) type I secretion system (T1SS) shown in Figure 2 of our <html><a href="https://2023.igem.wiki/austin-utexas/description">Project Description.</a></html>
  
...
+
Our parts collection includes a a selection of promoter (Type 2), coding sequence (Type 3), and terminator/regulatory gene (Type 4) parts that can be easily assembled to express microcins either constitutively or under inducible control. This allows for the modular engineering of microcin expression plasmids containing various microcins that can undergo extracellular secretion when used in conjunction with the secretion system plasmid pSK01.
  
<!-- Add more about the biology of this part here
+
<html><center><img src=https://static.igem.wiki/teams/4579/wiki/parts-collection-by-type.jpeg style="width:900px;height:auto;"></center></html>
===Usage and Biology===
+
<center><b>Figure 1.</b> <i>Basic parts categorized by their BTK/YTK part type. Type 3p and 3q parts assemble as if they were a single Type 3 part.</i> </center>
 +
 
 +
Our basic and composite parts follow the Bee Toolkit/Yeast Toolkit standard of Golden Gate assembly (Lee et al., 2015; Leonard et al., 2018). Our assembly method involves the use of BsmBI digestion-ligation to create basic parts which can then be further digested with BsaI and ligated to form composite parts. The BTK/YTK standard includes part type-specific prefix and suffix overhangs generated by BsaI for each part, and these overhangs are NOT included in their sequences in the registry. For reference, our standard’s part type-specific overhangs are listed in Figure 2 on our <html><a href=" https://2023.igem.wiki/austin-utexas/parts">Parts page</a></html>.
 +
 
 +
<h1>Categorization</h1>
 +
 
 +
===Basic parts===
 +
<ul>
 +
<li><b>Promoters (Type 2)</b> – Seven inducible promoters selected due to their relatively high dynamic range (Meyer et al., 2019) and apparent functionality in a variety of Proteobacteria (Schuster & Reisch, 2021), and one constitutive CP25 promoter (Leonard et al., 2018).</li>
 +
 
 +
<li><b>Coding Sequences (Type 3)</b> – Signal peptide + microcin fusion coding sequences, a green fluorescent protein gene, and secretion system genes <i>cvaA</i> and <i>cvaB</i> which are together referred to as CvaAB.</li>
 +
 
 +
<li><b>Terminators/Regulatory Genes (Type 4)</b> – An <i>rpoC</i> terminator plus a collection of seven regulatory genes, each associated with one of our seven inducible promoters.</li>
 +
</ul>
 +
 
 +
===Composite parts===
 +
<ul>
 +
<li><b>Constitutive Microcin Expression Assemblies</b> - Assemblies of microcins (some with immunity proteins) with a constitutive CP25 promoter and <i>rpoC</i> terminator. These function alongside pSK01 in a two-plasmid secretion system, and we use these two-plasmid systems to assess if our novel microcins are effective inhibitors of pathogenic targets.</li>
 +
 
 +
<li><b>Inducible GFP Expression Assemblies</b> – Assemblies of GFP under the control of various inducible promoter systems. These were used to assess the dynamic range of our inducible promoter systems.</li>
 +
 
 +
<li><b>Inducible Microcin Expression Assemblies</b> – Assemblies of select microcins under the control of an inducible promoter system.</li>
 +
</ul>
 +
 
 +
 
 +
 
 +
<h1>Usage and Biology</h1>
 +
This composite part is a transcriptional unit that constitutively expresses MccE10, a novel microcin identified by the bioinformatics tool <i>cinful</i>, which is suspected to have antimicrobial activity against bacteria of <i>Erwinia </i> genus.
 +
 
 +
 
 +
<h1>Characterization</h1>
 +
All parts uploaded to the registry by our team, including this one, have been sequence confirmed.
 +
 
 +
 
 +
<h1>References</h1>
 +
<ol>
 +
<li>Cole, T. J., Parker, J. K., Feller, A. L., Wilke, C. O., & Davies, B. W. (2022). Evidence for widespread class II microcins in Enterobacterales Genomes. <i>Applied and Environmental Microbiology, 88</i>(23), e01486-22.</li>
 +
 
 +
<li>Kim, S. Y., Parker, J. K., Gonzalez-Magaldi, M., Telford, M. S., Leahy, D. J., & Davies, B. W. (2023). Export of Diverse and Bioactive Small Proteins through a Type I Secretion System. <i>Applied and Environmental Microbiology, 89</i>(5), e00335-23.</li>
 +
 
 +
<li>Lee, M. E., DeLoache, W. C., Cervantes, B., & Dueber, J. E. (2015). A highly characterized yeast toolkit for modular, multipart assembly. <i>ACS Synthetic Biology, 4</i>(9), 975-986.</li>
 +
 
 +
<li>Leonard, S. P., Perutka, J., Powell, J. E., Geng, P., Richhart, D. D., Byrom, M., Kar, S., Davies, B. W., Ellington, D. E., Moran, N. A., & Barrick, J. E. (2018). Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. <i>ACS Synthetic Biology, 7</i>(5), 1279-1290.</li>
 +
 
 +
<li>Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J., & Voigt, C. A. (2019). Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. <i>Nature Chemical Biology, 15</i>(2), 196-204.</li>
 +
 
 +
<li>Schuster, L. A., & Reisch, C. R. (2021). A plasmid toolbox for controlled gene expression across the Proteobacteria. <i>Nucleic Acids Research, 49</i>(12), 7189-7202.</li>
 +
</ol>
  
 
<!-- -->
 
<!-- -->
<span class='h3bb'>Sequence and Features</span>
+
<h1>Sequence and Features</h1>  
 
<partinfo>BBa_K4579050 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K4579050 SequenceAndFeatures</partinfo>
  

Latest revision as of 12:29, 12 October 2023


Constitutive MccE10 expression plasmid

Introduction

The 2023 UT Austin iGEM Team’s modular microcin expression parts collection includes parts necessary for engineering a bacterial chassis to secrete microcins, a type of small antimicrobial peptide. Our team has specifically designed parts to engineer a modular two-plasmid system that facilitates extracellular secretion of microcins by the chassis. One plasmid contains the microcin with a signal peptide sequence that indicates to the cell that the microcin is to be secreted. The other plasmid (pSK01) is from the literature (Kim et al., 2023) and contains genes for the proteins CvaA and CvaB, which are necessary to secrete small peptides using the E. coli microcin V (MccV) type I secretion system (T1SS) shown in Figure 2 of our Project Description.

Our parts collection includes a a selection of promoter (Type 2), coding sequence (Type 3), and terminator/regulatory gene (Type 4) parts that can be easily assembled to express microcins either constitutively or under inducible control. This allows for the modular engineering of microcin expression plasmids containing various microcins that can undergo extracellular secretion when used in conjunction with the secretion system plasmid pSK01.

Figure 1. Basic parts categorized by their BTK/YTK part type. Type 3p and 3q parts assemble as if they were a single Type 3 part.

Our basic and composite parts follow the Bee Toolkit/Yeast Toolkit standard of Golden Gate assembly (Lee et al., 2015; Leonard et al., 2018). Our assembly method involves the use of BsmBI digestion-ligation to create basic parts which can then be further digested with BsaI and ligated to form composite parts. The BTK/YTK standard includes part type-specific prefix and suffix overhangs generated by BsaI for each part, and these overhangs are NOT included in their sequences in the registry. For reference, our standard’s part type-specific overhangs are listed in Figure 2 on our Parts page.

Categorization

Basic parts

  • Promoters (Type 2) – Seven inducible promoters selected due to their relatively high dynamic range (Meyer et al., 2019) and apparent functionality in a variety of Proteobacteria (Schuster & Reisch, 2021), and one constitutive CP25 promoter (Leonard et al., 2018).
  • Coding Sequences (Type 3) – Signal peptide + microcin fusion coding sequences, a green fluorescent protein gene, and secretion system genes cvaA and cvaB which are together referred to as CvaAB.
  • Terminators/Regulatory Genes (Type 4) – An rpoC terminator plus a collection of seven regulatory genes, each associated with one of our seven inducible promoters.

Composite parts

  • Constitutive Microcin Expression Assemblies - Assemblies of microcins (some with immunity proteins) with a constitutive CP25 promoter and rpoC terminator. These function alongside pSK01 in a two-plasmid secretion system, and we use these two-plasmid systems to assess if our novel microcins are effective inhibitors of pathogenic targets.
  • Inducible GFP Expression Assemblies – Assemblies of GFP under the control of various inducible promoter systems. These were used to assess the dynamic range of our inducible promoter systems.
  • Inducible Microcin Expression Assemblies – Assemblies of select microcins under the control of an inducible promoter system.


Usage and Biology

This composite part is a transcriptional unit that constitutively expresses MccE10, a novel microcin identified by the bioinformatics tool cinful, which is suspected to have antimicrobial activity against bacteria of Erwinia genus.


Characterization

All parts uploaded to the registry by our team, including this one, have been sequence confirmed.


References

  1. Cole, T. J., Parker, J. K., Feller, A. L., Wilke, C. O., & Davies, B. W. (2022). Evidence for widespread class II microcins in Enterobacterales Genomes. Applied and Environmental Microbiology, 88(23), e01486-22.
  2. Kim, S. Y., Parker, J. K., Gonzalez-Magaldi, M., Telford, M. S., Leahy, D. J., & Davies, B. W. (2023). Export of Diverse and Bioactive Small Proteins through a Type I Secretion System. Applied and Environmental Microbiology, 89(5), e00335-23.
  3. Lee, M. E., DeLoache, W. C., Cervantes, B., & Dueber, J. E. (2015). A highly characterized yeast toolkit for modular, multipart assembly. ACS Synthetic Biology, 4(9), 975-986.
  4. Leonard, S. P., Perutka, J., Powell, J. E., Geng, P., Richhart, D. D., Byrom, M., Kar, S., Davies, B. W., Ellington, D. E., Moran, N. A., & Barrick, J. E. (2018). Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. ACS Synthetic Biology, 7(5), 1279-1290.
  5. Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J., & Voigt, C. A. (2019). Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nature Chemical Biology, 15(2), 196-204.
  6. Schuster, L. A., & Reisch, C. R. (2021). A plasmid toolbox for controlled gene expression across the Proteobacteria. Nucleic Acids Research, 49(12), 7189-7202.

Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal XbaI site found at 327
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal XbaI site found at 327
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal XbaI site found at 327
  • 1000
    COMPATIBLE WITH RFC[1000]