Difference between revisions of "Part:BBa K4653012"

 
(Plasmid construction)
 
(4 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
<partinfo>BBa_K4653012 short</partinfo>
 
<partinfo>BBa_K4653012 short</partinfo>
  
1
+
In order to inhibit the infection of <I>B. cinerea</I>, the pathogen of grey mold and control the disease in tomato, we designed two pieces of shRNAs targeting the <I>Bcdcl1</I> and <I>Bcdcl2</I> gene of the pathogen, which is helping <I>B. cinerea</I> produce siRNAs, based on RNAi technology. shRNA can be actively absorbed by <I>B. cinerea</I>, then enter into its cells to be processed into siRNA, and further specifically target mRNA to achieve degradation. Or, entering plant cells, the related proteins in the cell will process and deliver shRNAs to <I>B. cinerea</I>, which can also achieve the effect of silencing mRNA, reducing the level of its specific protein, and finally forming the inhibition of the pathogen.
  
 
<!-- Add more about the biology of this part here
 
<!-- Add more about the biology of this part here
Line 17: Line 17:
 
<partinfo>BBa_K4653012 parameters</partinfo>
 
<partinfo>BBa_K4653012 parameters</partinfo>
 
<!-- -->
 
<!-- -->
 +
 +
===Biology===
 +
Dicer-like proteins DCL1 and DCL2 of <I>B. cinerea</I> participate in the synthesis of siRNA. Then siRNAs will be delivered to host plant cells to participate in the formation of RISC complexes in the host RNAi mechanism, and subsequently silence and inhibit host immune-related genes, coding mitogen activated protein kinase (MAPK) and cell wall-associated kinases (WAK), making plant cells more susceptible to infection. The shRNA was designed to silence <I>B. cinerea</I> genes <I>Bcdcl1</I> and <I>Bcdcl2</I>, preventing them from synthesizing siRNA that interferes with the plant cell's immune system, thus allowing the plant to effectively defend itself against <I>B. cinerea</I>.
 +
 +
===Design of shRNA===
 +
After confirming the selection of targets <I>Bcdcl2</I>, we searched the cDNA library of <I>B. cinerea</I> according to the sequences or primes provided in the literature, and found the homologous cDNA sequence of <I>B. cinerea</I>. Then, the sequence was input into the National Center for Biotechnology Information (NCBI) website for analysis and prediction, and the CDS sequence of the target gene was input into the total nucleic acid database BLAST to query the homologous similarity of neighboring species. siRNA sequences were designed in non-conserved regions to ensure species-specific and biosafety of our shRNAs.
 +
 +
Next, we used a professional siRNA designed website (<html><a href="https://www.genscript.com/tools/sirna-target-finder">https://www.genscript.com/tools/sirna-target-finder</a></html>) to predict the siRNA sequences that would effectively target the mRNA, and then screened out siRNA fragments with high potential activity in a series of predictions based on shRNA design principles. By making structural predictions of the mRNA (<html><a href="http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi">http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi</a></html>), we ensured that the selected siRNA sequences targeted relatively loose positions in the mRNA structure. For biosafety reasons, we BLAST the candidate siRNA fragments into the total mRNA database to ensure that it does not target any genes of common species (such as human, tomato, dog, rice, wheat, etc.), ensuring sequence specificity.
 +
 +
Finally, we assembled the selected siRNA sequence into our shRNA in the sequence of  siRNA sense strand - loop - reversed  siRNA antisense strand.
 +
 +
<center><html><img src="https://static.igem.wiki/teams/4653/wiki/parts/szu-parts-k4653012-1.png" width="570" height="170"  /></html></center>
 +
<center><b>Figure 1. shRNA(DCL2)-2 target the mRNA of <I>Bcdcl2</I></b></center>
 +
 +
===Plasmid construction===
 +
We have assembled  our shRNA in the sequence of  siRNA sense strand - loop - reversed  siRNA antisense strand, then sequence was assembled in the pET28a (+) plasmid. The recombinant vector was transferred into RNase-deficient <i>E. coli</i> HT115(DE3), and the large-scale fermentation production of shRNA in <I>E. coli</I> could be achieved by induction of IPTG. In our experiment, the results of treatment of different shRNAs at both phenotypic and molecular levels were analyzed to screen out the effective shRNAs.
 +
 +
<center><html><img src="https://static.igem.wiki/teams/4653/wiki/parts/szu-parts-infect.png" width="400" height="380"  /></html></center>
 +
<center><b>Figure 2. The shRNA production and function.</b></center>
 +
 +
===Usage===
 +
The shRNA(DCL2) will be used in crop protection through the way of spraying induced gene silencing (SIGS), which is an emerging, non transgenic RNAi strategy. After screening out an effective shRNA against <I>B. cinerea</I>, the shRNA will be wrapped in KH9-BP100, which belongs to cell-penetrating peptides in a spherical shape and can be used to deliver biological molecules, to forming a CPP-shRNA complex. Then, spraying the complex on the tomato infected by <I>B. cinerea</I>, we hope that it can play a more effective and more steady role in controlling grey mold.
 +
 +
==Characterization==
 +
===shRNA production induced by IPTG===
 +
After plasmid extraction, we transformed the constructed shRNA expression vector into <I>E.coli</I> HT115 (DE3) and performed PCR. Our specific primers successfully amplified a 260 bp band from the plasmid, confirming the successful transformation of the plasmid. This indicates that the shRNA expression vector has been successfully introduced into <I>E.coli</I> and can be detected and confirmed by PCR. This is an important milestone that lays the foundation for further experiments.
 +
 +
<center><html><img src="https://static.igem.wiki/teams/4653/wiki/results/szu-results-rnai-1.jpg" width="600" height="250"  /></html></center>
 +
 +
<center><b>Figure 3. Agarose Gel Electrophoresis of Plasmids after Plasmid PCR<br />
 +
1-5:  plasmids control; 5-10: Plasmids extracted from <I>E.coli</I>.</b></center>
 +
 +
Compared to the non-induced sample, there is a brighter band between 50-100 bp and 100-150 bp in the induced sample lane. Our shRNA has a size of 69 bp, while the Box-Survival shRNAs, being a concatenation of two shRNAs, have a size of 124 bp. This confirms the successful extraction of our shRNA, and the generated shRNA is of the expected size.
 +
 +
<center><html><img src="https://static.igem.wiki/teams/4653/wiki/results/szu-results-rnai-2.jpg" width="600" height="250"  /></html></center>
 +
<center><b>Figure 4. Electrophoresis of RNA extracted from <I>E. coli</I> HT115 (DE3).</b></center>
 +
 +
===CPP-shRNA under SEM===
 +
However, the instability of shRNA in the field environment hinders the optimal performance of our product. Understanding our expectations, our PI suggested that we could try using cell-penetrating peptides (CPP) in combination with shRNA for spray application, and provided us with KH9-BP100 as our CPP material. KH9-BP100 is a carrier peptide-based gene delivery system that enhances the endocytic uptake and cytoplasmic transfer of shRNA in plants, allowing for more efficient transfection of plant callus cells with shRNA. To understand the morphology of the shRNA and KH9-BP100 complex, we used scanning electron microscopy (SEM) to observe the morphology of shRNA, KH9-BP100, and shRNA+KH9-BP100 separately. As shown in the figure, we observed that CPP-shRNA complex form spherical aggregates under electron microscopy. These small spherical aggregates further tend to aggregate with each other. We speculate that this stacking aggregation is due to electrostatic forces.
 +
 +
<center><html><img src="https://static.igem.wiki/teams/4653/wiki/results/szu-results-rnai-3.png" width="400" height="300"  /></html></center>
 +
<center><b>Figure 5. Our CPP-shRNA complex under SEM.</b></center>
 +
 +
==References==
 +
[1] Niu D, Hamby R, Sanchez JN, Cai Q, Yan Q, Jin H. RNAs - a new frontier in crop protection. Curr Opin Biotechnol. 2021 Aug;70:204-212. doi: 10.1016/j.copbio.2021.06.005. Epub 2021 Jul 1.<br />
 +
[2] Sarkar A, Roy-Barman S. Spray-Induced Silencing of Pathogenicity Gene MoDES1 via Exogenous Double-Stranded RNA Can Confer Partial Resistance Against Fungal Blast in Rice. Front Plant Sci. 2021 Nov 26;12:733129. doi: 10.3389/fpls.2021.733129. <br />
 +
[3] Qiao L, Lan C, Capriotti L, Ah-Fong A, Nino Sanchez J, Hamby R, Heller J, Zhao H, Glass NL, Judelson HS, Mezzetti B, Niu D, Jin H. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnol J. 2021 Sep;19(9):1756-1768. doi: 10.1111/pbi.13589. Epub 2021 May 4. <br />
 +
[4] Bofill-De Ros X, Gu S. Guidelines for the optimal design of miRNA-based shRNAs. Methods. 2016 Jul 1;103:157-66. doi: 10.1016/j.ymeth.2016.04.003. Epub 2016 Apr 12. <br />
 +
[5] Wang M, Weiberg A, Lin FM, Thomma BP, Huang HD, Jin H. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants. 2016 Sep 19;2:16151. doi: 10.1038/nplants.2016.151.  <br />
 +
[6] Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science. 2013 Oct 4;342(6154):118-23. doi: 10.1126/science.1239705.  <br />
 +
[7] Thagun C, Horii Y, Mori M, Fujita S, Ohtani M, Tsuchiya K, Kodama Y, Odahara M, Numata K. Non-transgenic Gene Modulation via Spray Delivery of Nucleic Acid/Peptide Complexes into Plant Nuclei and Chloroplasts. ACS Nano. 2022 Mar 22;16(3):3506-3521. doi: 10.1021/acsnano.1c07723. Epub 2022 Feb 23. <br />
 +
[8] Rao DD, Senzer N, Wang Z, Kumar P, Jay CM, Nemunaitis J. Bifunctional short hairpin RNA (bi-shRNA): design and pathway to clinical application. Methods Mol Biol. 2013;942:259-78. doi: 10.1007/978-1-62703-119-6_14.<br />

Latest revision as of 12:05, 12 October 2023


shRNA(DCL2)-2

In order to inhibit the infection of B. cinerea, the pathogen of grey mold and control the disease in tomato, we designed two pieces of shRNAs targeting the Bcdcl1 and Bcdcl2 gene of the pathogen, which is helping B. cinerea produce siRNAs, based on RNAi technology. shRNA can be actively absorbed by B. cinerea, then enter into its cells to be processed into siRNA, and further specifically target mRNA to achieve degradation. Or, entering plant cells, the related proteins in the cell will process and deliver shRNAs to B. cinerea, which can also achieve the effect of silencing mRNA, reducing the level of its specific protein, and finally forming the inhibition of the pathogen.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Biology

Dicer-like proteins DCL1 and DCL2 of B. cinerea participate in the synthesis of siRNA. Then siRNAs will be delivered to host plant cells to participate in the formation of RISC complexes in the host RNAi mechanism, and subsequently silence and inhibit host immune-related genes, coding mitogen activated protein kinase (MAPK) and cell wall-associated kinases (WAK), making plant cells more susceptible to infection. The shRNA was designed to silence B. cinerea genes Bcdcl1 and Bcdcl2, preventing them from synthesizing siRNA that interferes with the plant cell's immune system, thus allowing the plant to effectively defend itself against B. cinerea.

Design of shRNA

After confirming the selection of targets Bcdcl2, we searched the cDNA library of B. cinerea according to the sequences or primes provided in the literature, and found the homologous cDNA sequence of B. cinerea. Then, the sequence was input into the National Center for Biotechnology Information (NCBI) website for analysis and prediction, and the CDS sequence of the target gene was input into the total nucleic acid database BLAST to query the homologous similarity of neighboring species. siRNA sequences were designed in non-conserved regions to ensure species-specific and biosafety of our shRNAs.

Next, we used a professional siRNA designed website (https://www.genscript.com/tools/sirna-target-finder) to predict the siRNA sequences that would effectively target the mRNA, and then screened out siRNA fragments with high potential activity in a series of predictions based on shRNA design principles. By making structural predictions of the mRNA (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi), we ensured that the selected siRNA sequences targeted relatively loose positions in the mRNA structure. For biosafety reasons, we BLAST the candidate siRNA fragments into the total mRNA database to ensure that it does not target any genes of common species (such as human, tomato, dog, rice, wheat, etc.), ensuring sequence specificity.

Finally, we assembled the selected siRNA sequence into our shRNA in the sequence of siRNA sense strand - loop - reversed siRNA antisense strand.

Figure 1. shRNA(DCL2)-2 target the mRNA of Bcdcl2

Plasmid construction

We have assembled our shRNA in the sequence of siRNA sense strand - loop - reversed siRNA antisense strand, then sequence was assembled in the pET28a (+) plasmid. The recombinant vector was transferred into RNase-deficient E. coli HT115(DE3), and the large-scale fermentation production of shRNA in E. coli could be achieved by induction of IPTG. In our experiment, the results of treatment of different shRNAs at both phenotypic and molecular levels were analyzed to screen out the effective shRNAs.

Figure 2. The shRNA production and function.

Usage

The shRNA(DCL2) will be used in crop protection through the way of spraying induced gene silencing (SIGS), which is an emerging, non transgenic RNAi strategy. After screening out an effective shRNA against B. cinerea, the shRNA will be wrapped in KH9-BP100, which belongs to cell-penetrating peptides in a spherical shape and can be used to deliver biological molecules, to forming a CPP-shRNA complex. Then, spraying the complex on the tomato infected by B. cinerea, we hope that it can play a more effective and more steady role in controlling grey mold.

Characterization

shRNA production induced by IPTG

After plasmid extraction, we transformed the constructed shRNA expression vector into E.coli HT115 (DE3) and performed PCR. Our specific primers successfully amplified a 260 bp band from the plasmid, confirming the successful transformation of the plasmid. This indicates that the shRNA expression vector has been successfully introduced into E.coli and can be detected and confirmed by PCR. This is an important milestone that lays the foundation for further experiments.

Figure 3. Agarose Gel Electrophoresis of Plasmids after Plasmid PCR
1-5: plasmids control; 5-10: Plasmids extracted from E.coli.

Compared to the non-induced sample, there is a brighter band between 50-100 bp and 100-150 bp in the induced sample lane. Our shRNA has a size of 69 bp, while the Box-Survival shRNAs, being a concatenation of two shRNAs, have a size of 124 bp. This confirms the successful extraction of our shRNA, and the generated shRNA is of the expected size.

Figure 4. Electrophoresis of RNA extracted from E. coli HT115 (DE3).

CPP-shRNA under SEM

However, the instability of shRNA in the field environment hinders the optimal performance of our product. Understanding our expectations, our PI suggested that we could try using cell-penetrating peptides (CPP) in combination with shRNA for spray application, and provided us with KH9-BP100 as our CPP material. KH9-BP100 is a carrier peptide-based gene delivery system that enhances the endocytic uptake and cytoplasmic transfer of shRNA in plants, allowing for more efficient transfection of plant callus cells with shRNA. To understand the morphology of the shRNA and KH9-BP100 complex, we used scanning electron microscopy (SEM) to observe the morphology of shRNA, KH9-BP100, and shRNA+KH9-BP100 separately. As shown in the figure, we observed that CPP-shRNA complex form spherical aggregates under electron microscopy. These small spherical aggregates further tend to aggregate with each other. We speculate that this stacking aggregation is due to electrostatic forces.

Figure 5. Our CPP-shRNA complex under SEM.

References

[1] Niu D, Hamby R, Sanchez JN, Cai Q, Yan Q, Jin H. RNAs - a new frontier in crop protection. Curr Opin Biotechnol. 2021 Aug;70:204-212. doi: 10.1016/j.copbio.2021.06.005. Epub 2021 Jul 1.
[2] Sarkar A, Roy-Barman S. Spray-Induced Silencing of Pathogenicity Gene MoDES1 via Exogenous Double-Stranded RNA Can Confer Partial Resistance Against Fungal Blast in Rice. Front Plant Sci. 2021 Nov 26;12:733129. doi: 10.3389/fpls.2021.733129.
[3] Qiao L, Lan C, Capriotti L, Ah-Fong A, Nino Sanchez J, Hamby R, Heller J, Zhao H, Glass NL, Judelson HS, Mezzetti B, Niu D, Jin H. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnol J. 2021 Sep;19(9):1756-1768. doi: 10.1111/pbi.13589. Epub 2021 May 4.
[4] Bofill-De Ros X, Gu S. Guidelines for the optimal design of miRNA-based shRNAs. Methods. 2016 Jul 1;103:157-66. doi: 10.1016/j.ymeth.2016.04.003. Epub 2016 Apr 12.
[5] Wang M, Weiberg A, Lin FM, Thomma BP, Huang HD, Jin H. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants. 2016 Sep 19;2:16151. doi: 10.1038/nplants.2016.151.
[6] Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science. 2013 Oct 4;342(6154):118-23. doi: 10.1126/science.1239705.
[7] Thagun C, Horii Y, Mori M, Fujita S, Ohtani M, Tsuchiya K, Kodama Y, Odahara M, Numata K. Non-transgenic Gene Modulation via Spray Delivery of Nucleic Acid/Peptide Complexes into Plant Nuclei and Chloroplasts. ACS Nano. 2022 Mar 22;16(3):3506-3521. doi: 10.1021/acsnano.1c07723. Epub 2022 Feb 23.
[8] Rao DD, Senzer N, Wang Z, Kumar P, Jay CM, Nemunaitis J. Bifunctional short hairpin RNA (bi-shRNA): design and pathway to clinical application. Methods Mol Biol. 2013;942:259-78. doi: 10.1007/978-1-62703-119-6_14.