Difference between revisions of "Part:BBa K4653002"

(Plasmid construction)
 
(10 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
<partinfo>BBa_K4653002 short</partinfo>
 
<partinfo>BBa_K4653002 short</partinfo>
  
In order to kill <i>B. cinerea</i>, the pathogen of grey mold and control the disease in tomato, we designed two pieces of shRNAs targeting the <I>CHSIIIa</i> gene of the pathogen, which is essential for its cell wall formation, based on RNAi technology. shRNA can be actively absorbed by <I>B. cinerea</I>, then enter into its cells to be processed into siRNA, and further specifically target mRNA to achieve degradation. Or, entering plant cells, the related proteins in the cell will process and deliver shRNAs to <I>B. cinerea</i>, which can also achieve the effect of silencing mRNA, reducing the level of its specific protein, and finally forming the inhibition of the pathogen.
+
In order to kill <i>B. cinerea</i>, the pathogen of grey mold and control the disease in tomato, we designed two pieces of shRNAs targeting the <I>BcchsIIIa</i> gene of the pathogen, which is essential for its cell wall formation, based on RNAi technology. shRNA can be actively absorbed by <I>B. cinerea</I>, then enter into its cells to be processed into siRNA, and further specifically target mRNA to achieve degradation. Or, entering plant cells, the related proteins in the cell will process and deliver shRNAs to <I>B. cinerea</i>, which can also achieve the effect of silencing mRNA, reducing the level of its specific protein, and finally forming the inhibition of the pathogen.
  
 
==Essential information==
 
==Essential information==
Line 22: Line 22:
  
 
===Biology===
 
===Biology===
Chitin synthase (CHS) catalyzes the synthesis of chitin, a major structural component of fungal cell walls consisting of β-1, 4-linked N-acetylglucosamine polymers. CHS can be divided into seven classes, and ascomycetes usually have representatives of all seven classes, with each enzyme having a specific role. CHS (III, V, and VI) are specific to molds, suggesting that they may play an important role in hyphal growth. Like other ascomycetes, <i>B. cinerea</i> contains two CHSIII genes. It has been shown that the <i>BcchsIIIa</i> gene is most expressed in the CHSIII genes, whereas the <i>BcchsIIIb</i> gene is not expressed in any of the growth conditions used. By silencing the important chitin synthase gene BcCHSIIIa, the formation of the cell wall of <i>B. cinerea</i> could be affected, thus killing pathogenic fungi.
+
Chitin synthase (CHS) catalyzes the synthesis of chitin, a major structural component of fungal cell walls consisting of β-1, 4-linked N-acetylglucosamine polymers. CHS can be divided into seven classes, and ascomycetes usually have representatives of all seven classes, with each enzyme having a specific role. CHS (III, V, and VI) are specific to molds, suggesting that they may play an important role in hyphal growth. Like other ascomycetes, <i>B. cinerea</i> contains two CHSIII genes. It has been shown that the <i>BcchsIIIa</i> gene is most expressed in the CHSIII genes, whereas the <i>BcchsIIIb</i> gene is not expressed in any of the growth conditions used. By silencing the important chitin synthase gene <I>BcchsIIIa</I>, the formation of the cell wall of <i>B. cinerea</i> could be affected, thus killing pathogenic fungi.
  
 
===Design of shRNA===
 
===Design of shRNA===
After confirming the selection of targets BcCHSIIIa, we searched the cDNA library of B. cinerea according to the sequences or primes provided in the literature, and found the homologous cDNA sequence of B. cinerea. Then, the sequence was input into the National Center for Biotechnology Information (NCBI) website for analysis and prediction, and the CDS sequence of the target gene was input into the total nucleic acid database BLAST to query the homologous similarity of neighboring species. siRNA sequences were designed in non-conserved regions to ensure species-specific and biosafety of our shRNAs.
+
After confirming the selection of targets <I>BcchsIIIa</I>, we searched the cDNA library of <I>B. cinerea</I> according to the sequences or primes provided in the literature, and found the homologous cDNA sequence of <I>B. cinerea</I>. Then, the sequence was input into the National Center for Biotechnology Information (NCBI) website for analysis and prediction, and the CDS sequence of the target gene was input into the total nucleic acid database BLAST to query the homologous similarity of neighboring species. siRNA sequences were designed in non-conserved regions to ensure species-specific and biosafety of our shRNAs.
  
 
Next, we used a professional siRNA designed website ( <html><a href="https://www.genscript.com/tools/sirna-target-finder">https://www.genscript.com/tools/sirna-target-finder</a></html>) to predict the siRNA sequences that would effectively target the mRNA, and then screened out siRNA fragments with high potential activity in a series of predictions based on shRNA design principles. By making structural predictions of the mRNA (<html><a href="http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi">http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi</a></html>), we ensured that the selected siRNA sequences targeted relatively loose positions in the mRNA structure. For biosafety reasons, we BLAST the candidate siRNA fragments into the total mRNA database to ensure that it does not target any genes of common species (such as human, tomato, dog, rice, wheat, etc.), ensuring sequence specificity.
 
Next, we used a professional siRNA designed website ( <html><a href="https://www.genscript.com/tools/sirna-target-finder">https://www.genscript.com/tools/sirna-target-finder</a></html>) to predict the siRNA sequences that would effectively target the mRNA, and then screened out siRNA fragments with high potential activity in a series of predictions based on shRNA design principles. By making structural predictions of the mRNA (<html><a href="http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi">http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi</a></html>), we ensured that the selected siRNA sequences targeted relatively loose positions in the mRNA structure. For biosafety reasons, we BLAST the candidate siRNA fragments into the total mRNA database to ensure that it does not target any genes of common species (such as human, tomato, dog, rice, wheat, etc.), ensuring sequence specificity.
Line 32: Line 32:
  
 
<center><html><img src="https://static.igem.wiki/teams/4653/wiki/parts/szu-parts-k4653002-1.jpg" width="600" height="150"  /></html></center>
 
<center><html><img src="https://static.igem.wiki/teams/4653/wiki/parts/szu-parts-k4653002-1.jpg" width="600" height="150"  /></html></center>
<center><b>Figure 1. shRNA(CHSIIIa)-2 target the mRNA of BcCHSIIIa</b></center>
+
<center><b>Figure 1. shRNA(CHSIIIa)-2 target the mRNA of <I>BcchsIIIa</I></b></center>
  
 
===Plasmid construction===
 
===Plasmid construction===
 
We have assembled  our shRNA in the sequence of  siRNA sense strand - loop - reversed  siRNA antisense strand, then sequence was assembled in the pET28a (+) plasmid. The recombinant vector was transferred into RNase-deficient <i>E. coli</i> HT115(DE3), and the large-scale fermentation production of shRNA in <I>E. coli</I> could be achieved by induction of IPTG. In our experiment, the results of treatment of different shRNAs at both phenotypic and molecular levels were analyzed to screen out the effective shRNAs.
 
We have assembled  our shRNA in the sequence of  siRNA sense strand - loop - reversed  siRNA antisense strand, then sequence was assembled in the pET28a (+) plasmid. The recombinant vector was transferred into RNase-deficient <i>E. coli</i> HT115(DE3), and the large-scale fermentation production of shRNA in <I>E. coli</I> could be achieved by induction of IPTG. In our experiment, the results of treatment of different shRNAs at both phenotypic and molecular levels were analyzed to screen out the effective shRNAs.
  
<center><html><img src="" width="600" height="250"  /></html></center>
+
<center><html><img src="https://static.igem.wiki/teams/4653/wiki/parts/szu-parts-survival.png" width="400" height="380"  /></html></center>
<center><b>Figure 2. The shRNA production device and RNA interference.</b></center>
+
<center><b>Figure 2. The shRNA production and function.</b></center>
  
 
===Usage===
 
===Usage===
Line 62: Line 62:
 
For the naked shRNA treatment, we added 10 μL solution containing 10 μg shRNA in and around the circle of the fruit surface. After the liquid dried, we drilled holes on the edge of the <I>B. cinerea</I> plate with a 10 μL transparent suction head, and then covered the surface of the fruit in the dotted line area with the mycelium side of the cake. In the control group, we selected non-specific shRNA GFP. The treated tomato fruits were placed in a humid environment at 21 ℃. After three days, ImageJ software was used to conduct a quantitative analysis of the lesion area, which was determined by the area covered by mycelia. Error bars represent standard deviations (SD) obtained from 11-15 biological replicates, the data are F-tested and T-tested, the level of significant difference is passed by a single-tail test, and shown above the bar chart (ns P > 0.05;* P  < 0.05;** P  < 0.01;*** P  < 0.001). For the treatment coated with transmembrane peptide (CPP), the treatment was consistent with the naked shRNA treatment, except that the solution of dripping per sample was changed to 12 μL containing 10 μg shRNA and 8.2 μL 1mg/mL CPP (Figure 5).
 
For the naked shRNA treatment, we added 10 μL solution containing 10 μg shRNA in and around the circle of the fruit surface. After the liquid dried, we drilled holes on the edge of the <I>B. cinerea</I> plate with a 10 μL transparent suction head, and then covered the surface of the fruit in the dotted line area with the mycelium side of the cake. In the control group, we selected non-specific shRNA GFP. The treated tomato fruits were placed in a humid environment at 21 ℃. After three days, ImageJ software was used to conduct a quantitative analysis of the lesion area, which was determined by the area covered by mycelia. Error bars represent standard deviations (SD) obtained from 11-15 biological replicates, the data are F-tested and T-tested, the level of significant difference is passed by a single-tail test, and shown above the bar chart (ns P > 0.05;* P  < 0.05;** P  < 0.01;*** P  < 0.001). For the treatment coated with transmembrane peptide (CPP), the treatment was consistent with the naked shRNA treatment, except that the solution of dripping per sample was changed to 12 μL containing 10 μg shRNA and 8.2 μL 1mg/mL CPP (Figure 5).
  
<center><html><img src="" width="600" height="250"  /></html></center>
+
<center><html><img src="https://static.igem.wiki/teams/4653/wiki/parts/szu-parts-k4653002-5.jpg" width="600" height="680"  /></html></center>
<center><b>Figure 5. Distribution of disease spots on tomato fruit.</b></center>
+
<center><b>Figure 5. Distribution of disease spots on tomato fruits.</b></center>
 +
<center><b>(a)Phenotype of infected tomatoes after treatment. (b)Relative lesion size of <I>B. cinerea</I> on tomatoes after spraying naked shRNA. (c)Relative lesion size of <I>B. cinerea</I> on tomatoes after spraying CPP-shRNA.</b></center>
  
At the phenotypic level, the shRNA(CHSIIIa)-2 treatment was effective in reducing the relative plaque area by x% compared with the control group. When combined with CPP, the effect of shRNA(CHSIIIa)-2 was significantly improved, and the relative plaque area of the experimental group was reduced by x%.
+
At the phenotypic level, the shRNA(CHSIIIa)-2 treatment was effective in reducing the relative plaque area by 12.6% compared with the control group. When combined with CPP, the effect of shRNA(CHSIIIa)-2 was significantly improved, and the relative plaque area of the experimental group was reduced by 16.3%.
  
 
===Detection of inhibition effect by qRT-PCR===
 
===Detection of inhibition effect by qRT-PCR===
 
On the third day of the experiment, after sampling the lesions of tomato fruits, the sample RNA was extracted, reverse-transcribed, and qRT-PCR was performed to detect the inhibition effect of shRNA on mycelium target mRNA in infected fruits (Figure 6).
 
On the third day of the experiment, after sampling the lesions of tomato fruits, the sample RNA was extracted, reverse-transcribed, and qRT-PCR was performed to detect the inhibition effect of shRNA on mycelium target mRNA in infected fruits (Figure 6).
  
<center><html><img src="" width="600" height="250"  /></html></center>
+
<center><html><img src="https://static.igem.wiki/teams/4653/wiki/parts/szu-parts-k4653002-6.jpg" width="600" height="380"  /></html></center>
 
<center><b>Figure 6. Inhibition of target genes detected by qRT-PCR.</b></center>
 
<center><b>Figure 6. Inhibition of target genes detected by qRT-PCR.</b></center>
 +
<center><b>(a)Inhibition of target genes after naked shRNA treatment. (b)Inhibition of target genes after CPP-shRNA treatment.</b></center>
  
From the results of molecular experiments, the silencing rates of the experiment that spraying the naked shRNA(CHSIIIa)-2 is x%, after binding with CPP, the silencing rates could reach x%.
+
From the results of molecular experiments, the silencing rates of the experiment that spraying the naked shRNA(CHSIIIa)-2 is 22.7%, after binding with CPP, the silencing rates could reach 21.0%. There was no significant difference before and after combining with CPP.
  
 
==References==
 
==References==
Line 83: Line 85:
 
[6] Soulié MC, Piffeteau A, Choquer M, Boccara M, Vidal-Cros A. Disruption of Botrytis cinerea class I chitin synthase gene Bcchs1 results in cell wall weakening and reduced virulence. Fungal Genet Biol. 2003 Oct;40(1):38-46. doi: 10.1016/s1087-1845(03)00065-3. <br />  
 
[6] Soulié MC, Piffeteau A, Choquer M, Boccara M, Vidal-Cros A. Disruption of Botrytis cinerea class I chitin synthase gene Bcchs1 results in cell wall weakening and reduced virulence. Fungal Genet Biol. 2003 Oct;40(1):38-46. doi: 10.1016/s1087-1845(03)00065-3. <br />  
 
[7] Morcx S, Kunz C, Choquer M, Assie S, Blondet E, Simond-Côte E, Gajek K, Chapeland-Leclerc F, Expert D, Soulie MC. Disruption of Bcchs4, Bcchs6 or Bcchs7 chitin synthase genes in Botrytis cinerea and the essential role of class VI chitin synthase (Bcchs6). Fungal Genet Biol. 2013 Mar;52:1-8. doi: 10.1016/j.fgb.2012.11.011. Epub 2012 Dec 22. <br />  
 
[7] Morcx S, Kunz C, Choquer M, Assie S, Blondet E, Simond-Côte E, Gajek K, Chapeland-Leclerc F, Expert D, Soulie MC. Disruption of Bcchs4, Bcchs6 or Bcchs7 chitin synthase genes in Botrytis cinerea and the essential role of class VI chitin synthase (Bcchs6). Fungal Genet Biol. 2013 Mar;52:1-8. doi: 10.1016/j.fgb.2012.11.011. Epub 2012 Dec 22. <br />  
[8] Thagun C, Horii Y, Mori M, Fujita S, Ohtani M, Tsuchiya K, Kodama Y, Odahara M, Numata K. Non-transgenic Gene Modulation via Spray Delivery of Nucleic Acid/Peptide Complexes into Plant Nuclei and Chloroplasts. ACS Nano. 2022 Mar 22;16(3):3506-3521. doi: 10.1021/acsnano.1c07723. Epub 2022 Feb 23. <br />
+
[8] Thagun C, Horii Y, Mori M, Fujita S, Ohtani M, Tsuchiya K, Kodama Y, Odahara M, Numata K. Non-transgenic Gene Modulation via Spray Delivery of Nucleic Acid/Peptide Complexes into Plant Nuclei and Chloroplasts. ACS Nano. 2022 Mar 22;16(3):3506-3521. doi: 10.1021/acsnano.1c07723. Epub 2022 Feb 23. <br />
[9] Rao DD, Senzer N, Wang Z, Kumar P, Jay CM, Nemunaitis J. Bifunctional short hairpin RNA (bi-shRNA): design and pathway to clinical application. Methods Mol Biol. 2013;942:259-78. doi: 10.1007/978-1-62703-119-6_14.<br />
+

Latest revision as of 11:57, 12 October 2023


shRNA(CHSIIIa)-2

In order to kill B. cinerea, the pathogen of grey mold and control the disease in tomato, we designed two pieces of shRNAs targeting the BcchsIIIa gene of the pathogen, which is essential for its cell wall formation, based on RNAi technology. shRNA can be actively absorbed by B. cinerea, then enter into its cells to be processed into siRNA, and further specifically target mRNA to achieve degradation. Or, entering plant cells, the related proteins in the cell will process and deliver shRNAs to B. cinerea, which can also achieve the effect of silencing mRNA, reducing the level of its specific protein, and finally forming the inhibition of the pathogen.

Essential information

Sequencing

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Biology

Chitin synthase (CHS) catalyzes the synthesis of chitin, a major structural component of fungal cell walls consisting of β-1, 4-linked N-acetylglucosamine polymers. CHS can be divided into seven classes, and ascomycetes usually have representatives of all seven classes, with each enzyme having a specific role. CHS (III, V, and VI) are specific to molds, suggesting that they may play an important role in hyphal growth. Like other ascomycetes, B. cinerea contains two CHSIII genes. It has been shown that the BcchsIIIa gene is most expressed in the CHSIII genes, whereas the BcchsIIIb gene is not expressed in any of the growth conditions used. By silencing the important chitin synthase gene BcchsIIIa, the formation of the cell wall of B. cinerea could be affected, thus killing pathogenic fungi.

Design of shRNA

After confirming the selection of targets BcchsIIIa, we searched the cDNA library of B. cinerea according to the sequences or primes provided in the literature, and found the homologous cDNA sequence of B. cinerea. Then, the sequence was input into the National Center for Biotechnology Information (NCBI) website for analysis and prediction, and the CDS sequence of the target gene was input into the total nucleic acid database BLAST to query the homologous similarity of neighboring species. siRNA sequences were designed in non-conserved regions to ensure species-specific and biosafety of our shRNAs.

Next, we used a professional siRNA designed website ( https://www.genscript.com/tools/sirna-target-finder) to predict the siRNA sequences that would effectively target the mRNA, and then screened out siRNA fragments with high potential activity in a series of predictions based on shRNA design principles. By making structural predictions of the mRNA (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi), we ensured that the selected siRNA sequences targeted relatively loose positions in the mRNA structure. For biosafety reasons, we BLAST the candidate siRNA fragments into the total mRNA database to ensure that it does not target any genes of common species (such as human, tomato, dog, rice, wheat, etc.), ensuring sequence specificity.

Finally, we assembled the selected siRNA sequence into our shRNA in the sequence of siRNA sense strand - loop - reversed siRNA antisense strand.

Figure 1. shRNA(CHSIIIa)-2 target the mRNA of BcchsIIIa

Plasmid construction

We have assembled our shRNA in the sequence of siRNA sense strand - loop - reversed siRNA antisense strand, then sequence was assembled in the pET28a (+) plasmid. The recombinant vector was transferred into RNase-deficient E. coli HT115(DE3), and the large-scale fermentation production of shRNA in E. coli could be achieved by induction of IPTG. In our experiment, the results of treatment of different shRNAs at both phenotypic and molecular levels were analyzed to screen out the effective shRNAs.

Figure 2. The shRNA production and function.

Usage

The shRNA(CHSIIIa) will be used in crop protection through the way of spraying induced gene silencing (SIGS), which is an emerging, non transgenic RNAi strategy. After screening out an effective shRNA against B. cinerea, the shRNA will be wrapped in KH9-BP100, which belongs to cell-penetrating peptides in a spherical shape and can be used to deliver biological molecules, to forming a CPP-shRNA complex. Then, spraying the complex on the tomato infected by B. cinerea, we hope that it can play a more effective and more steady role in controlling grey mold.

Characterization

shRNA production induced by IPTG

After plasmid extraction, we transformed the constructed shRNA expression vector into E.coli HT115 (DE3) and performed PCR. Our specific primers successfully amplified a 260 bp band from the plasmid, confirming the successful transformation of the plasmid. This indicates that the shRNA expression vector has been successfully introduced into E.coli and can be detected and confirmed by PCR. This is an important milestone that lays the foundation for further experiments.

Figure 3. Agarose Gel Electrophoresis of Plasmids after Plasmid PCR
1-5: plasmids control; 5-10: Plasmids extracted from E.coli.

Compared to the non-induced sample, there is a brighter band between 50-100 bp and 100-150 bp in the induced sample lane. Our shRNA has a size of 69 bp, while the Box-Survival shRNAs, being a concatenation of two shRNAs, have a size of 124 bp. This confirms the successful extraction of our shRNA, and the generated shRNA is of the expected size.

Figure 4. Electrophoresis of RNA extracted from E. coli HT115 (DE3).

Distribution of disease spots

We designed shRNA to target and silence genes necessary for the survival of B. cinerea and virulence genes of infected tomatoes. Therefore, we wanted to test whether spraying shRNA can really reduce the attack of B. cinerea on tomato fruits. We used a black marker to draw a circle with a diameter of about 3 mm on the surface of the tomato fruit, and poked five small holes within the circle with a sterilized thin needle.

For the naked shRNA treatment, we added 10 μL solution containing 10 μg shRNA in and around the circle of the fruit surface. After the liquid dried, we drilled holes on the edge of the B. cinerea plate with a 10 μL transparent suction head, and then covered the surface of the fruit in the dotted line area with the mycelium side of the cake. In the control group, we selected non-specific shRNA GFP. The treated tomato fruits were placed in a humid environment at 21 ℃. After three days, ImageJ software was used to conduct a quantitative analysis of the lesion area, which was determined by the area covered by mycelia. Error bars represent standard deviations (SD) obtained from 11-15 biological replicates, the data are F-tested and T-tested, the level of significant difference is passed by a single-tail test, and shown above the bar chart (ns P > 0.05;* P  < 0.05;** P  < 0.01;*** P  < 0.001). For the treatment coated with transmembrane peptide (CPP), the treatment was consistent with the naked shRNA treatment, except that the solution of dripping per sample was changed to 12 μL containing 10 μg shRNA and 8.2 μL 1mg/mL CPP (Figure 5).

Figure 5. Distribution of disease spots on tomato fruits.
(a)Phenotype of infected tomatoes after treatment. (b)Relative lesion size of B. cinerea on tomatoes after spraying naked shRNA. (c)Relative lesion size of B. cinerea on tomatoes after spraying CPP-shRNA.

At the phenotypic level, the shRNA(CHSIIIa)-2 treatment was effective in reducing the relative plaque area by 12.6% compared with the control group. When combined with CPP, the effect of shRNA(CHSIIIa)-2 was significantly improved, and the relative plaque area of the experimental group was reduced by 16.3%.

Detection of inhibition effect by qRT-PCR

On the third day of the experiment, after sampling the lesions of tomato fruits, the sample RNA was extracted, reverse-transcribed, and qRT-PCR was performed to detect the inhibition effect of shRNA on mycelium target mRNA in infected fruits (Figure 6).

Figure 6. Inhibition of target genes detected by qRT-PCR.
(a)Inhibition of target genes after naked shRNA treatment. (b)Inhibition of target genes after CPP-shRNA treatment.

From the results of molecular experiments, the silencing rates of the experiment that spraying the naked shRNA(CHSIIIa)-2 is 22.7%, after binding with CPP, the silencing rates could reach 21.0%. There was no significant difference before and after combining with CPP.

References

[1] Niu D, Hamby R, Sanchez JN, Cai Q, Yan Q, Jin H. RNAs - a new frontier in crop protection. Curr Opin Biotechnol. 2021 Aug;70:204-212. doi: 10.1016/j.copbio.2021.06.005. Epub 2021 Jul 1.
[2] Sarkar A, Roy-Barman S. Spray-Induced Silencing of Pathogenicity Gene MoDES1 via Exogenous Double-Stranded RNA Can Confer Partial Resistance Against Fungal Blast in Rice. Front Plant Sci. 2021 Nov 26;12:733129. doi: 10.3389/fpls.2021.733129.
[3] Qiao L, Lan C, Capriotti L, Ah-Fong A, Nino Sanchez J, Hamby R, Heller J, Zhao H, Glass NL, Judelson HS, Mezzetti B, Niu D, Jin H. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnol J. 2021 Sep;19(9):1756-1768. doi: 10.1111/pbi.13589. Epub 2021 May 4.
[4] Bofill-De Ros X, Gu S. Guidelines for the optimal design of miRNA-based shRNAs. Methods. 2016 Jul 1;103:157-66. doi: 10.1016/j.ymeth.2016.04.003. Epub 2016 Apr 12.
[5] Soulié MC, Perino C, Piffeteau A, Choquer M, Malfatti P, Cimerman A, Kunz C, Boccara M, Vidal-Cros A. Botrytis cinerea virulence is drastically reduced after disruption of chitin synthase class III gene (Bcchs3a). Cell Microbiol. 2006 Aug;8(8):1310-21. doi: 10.1111/j.1462-5822.2006.00711.x.
[6] Soulié MC, Piffeteau A, Choquer M, Boccara M, Vidal-Cros A. Disruption of Botrytis cinerea class I chitin synthase gene Bcchs1 results in cell wall weakening and reduced virulence. Fungal Genet Biol. 2003 Oct;40(1):38-46. doi: 10.1016/s1087-1845(03)00065-3.
[7] Morcx S, Kunz C, Choquer M, Assie S, Blondet E, Simond-Côte E, Gajek K, Chapeland-Leclerc F, Expert D, Soulie MC. Disruption of Bcchs4, Bcchs6 or Bcchs7 chitin synthase genes in Botrytis cinerea and the essential role of class VI chitin synthase (Bcchs6). Fungal Genet Biol. 2013 Mar;52:1-8. doi: 10.1016/j.fgb.2012.11.011. Epub 2012 Dec 22.
[8] Thagun C, Horii Y, Mori M, Fujita S, Ohtani M, Tsuchiya K, Kodama Y, Odahara M, Numata K. Non-transgenic Gene Modulation via Spray Delivery of Nucleic Acid/Peptide Complexes into Plant Nuclei and Chloroplasts. ACS Nano. 2022 Mar 22;16(3):3506-3521. doi: 10.1021/acsnano.1c07723. Epub 2022 Feb 23.