Difference between revisions of "Part:BBa K1378003"
Siliang Zhan (Talk | contribs) (→Improved part) |
|||
(19 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
<partinfo>BBa_K1378003 short</partinfo> | <partinfo>BBa_K1378003 short</partinfo> | ||
+ | <html> | ||
+ | <figure><img src="https://static.igem.org/mediawiki/2014/b/ba/IGEM_logo_pek.png"/></figure> | ||
+ | |||
+ | </html> | ||
+ | <br> | ||
+ | <html><img style="float:left;width:64px;margin-right:2em" src="https://static.igem.wiki/teams/4765/wiki/2023-b-home.png" alt="contributed by Fudan iGEM 2023"></html> | ||
+ | |||
+ | ===Improved by Fudan iGEM 2023 === | ||
+ | Intimin which includes a short N-terminal signal peptide to direct its trafficking to the periplasm, a LysM domain for peptidoglycan binding, and a beta-barrel for transmembrane insertion<ref>Piñero-Lambea, C., Bodelón, G., Fernández-Periáñez, R., Cuesta, A. M., Álvarez-Vallina, L., & Fernández, L. Á. (2015). Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synthetic Biology, 4(4), 463–473. https://doi.org/10.1021/sb500252a</ref> , possesses the outer membrane anchoring of MVN.Instead of using INPNC-MVN fusion, we introduce intimin as a surface display system to present MVN, thus facilitating adhesion between ''E. coli'' and ''Microcystis aeruginosa'' PCC7806. | ||
+ | ====Improved part==== | ||
+ | Our improved part is [https://parts.igem.org/Part:BBa_K4765109 BBa_K4765109 (Twister P1 + T7_RBS + intimin-MVN fusion + stem-loop)] | ||
+ | . We introduce intimin as a surface display system to present MVN and construct this part into our ribozyme-assisted polycistronic co-expression system. | ||
=='''Introduction'''== | =='''Introduction'''== | ||
Line 12: | Line 24: | ||
<!-- --> | <!-- --> | ||
<span class='h3bb'>Sequence and Features</span> | <span class='h3bb'>Sequence and Features</span> | ||
− | <partinfo> | + | <partinfo>BBa_K1378003 SequenceAndFeatures</partinfo> |
=='''Usage and Biology'''== | =='''Usage and Biology'''== | ||
− | < | + | <p>MVN is a lectin isolated from the cyanobacteria <i>Microcystis aeruginosa</i> PCC7806. It is an 108 aa protein that consists of 2 domains. According to a carbohydrate microarray carried out previously, MVN binds to carbohydrate and the highest signals are observed with structures that contain α(1→2) linked mannose residues <sup>[1]</sup>. A binding partner of MVN was identified in the lipopolysaccharide (LPS) fraction of <i>M. aeruginosa</i> PCC7806 and it possibly represents the O-antigen of a LPS. MVN has been previously expressed in <i>E. coli</i> and its binding effect to cyanobacteria cells is species-specific <sup>[1]</sup>. </p> |
− | + | ||
− | />< | + | |
+ | <html> | ||
+ | <figure style="text-align: center"><img style="width:30%" src="https://static.igem.org/mediawiki/2014/0/03/Peking2014ZZJ_MVN.png" | ||
+ | /><figcaption style="text-align:left"><b>Figure 1.</b> Solution structure of MVN. MVN consists of 2 domains, domain A | ||
and domain B, which are colored yellow and blue respectively. Domain A is formed by residues 38-93 while domain B is | and domain B, which are colored yellow and blue respectively. Domain A is formed by residues 38-93 while domain B is | ||
− | |||
formed by residues 1-37 and 94-108. The mannan binding site is only found in domain A. This figure is taken from | formed by residues 1-37 and 94-108. The mannan binding site is only found in domain A. This figure is taken from | ||
− | |||
Protein Data Bank (PDB ID: 2Y1S).</figcaption></figure> | Protein Data Bank (PDB ID: 2Y1S).</figcaption></figure> | ||
+ | </html> | ||
+ | <br> | ||
+ | <br> | ||
+ | =='''Reference'''== | ||
− | + | <p>1.Kehr, J. C., Zilliges, Y., Springer, A., Disney, M. D., Ratner, D. D., Bouchier, C., ... & Dittmann, E. (2006). A mannan binding lectin is involved in cell–cell attachment in a toxic strain of Microcystis aeruginosa. Molecular microbiology, 59(3), 893-906.</p> | |
<!-- Uncomment this to enable Functional Parameter display | <!-- Uncomment this to enable Functional Parameter display | ||
===Functional Parameters=== | ===Functional Parameters=== | ||
− | <partinfo> | + | <partinfo>BBa_K1378003 parameters</partinfo> |
<!-- --> | <!-- --> |
Latest revision as of 10:44, 12 October 2023
Microvirin (MVN)---a lectin from Microcystis aeruginosa
Improved by Fudan iGEM 2023
Intimin which includes a short N-terminal signal peptide to direct its trafficking to the periplasm, a LysM domain for peptidoglycan binding, and a beta-barrel for transmembrane insertion[1] , possesses the outer membrane anchoring of MVN.Instead of using INPNC-MVN fusion, we introduce intimin as a surface display system to present MVN, thus facilitating adhesion between E. coli and Microcystis aeruginosa PCC7806.
Improved part
Our improved part is BBa_K4765109 (Twister P1 + T7_RBS + intimin-MVN fusion + stem-loop) . We introduce intimin as a surface display system to present MVN and construct this part into our ribozyme-assisted polycistronic co-expression system.
Introduction
This plasmid is a basic part of the mannan binding lectin Microvirin (MVN). Microvirin can be expressed in E. coli and it can bind to Microcystis aeruginosa PCC7806 specifically.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI site found at 23
Usage and Biology
MVN is a lectin isolated from the cyanobacteria Microcystis aeruginosa PCC7806. It is an 108 aa protein that consists of 2 domains. According to a carbohydrate microarray carried out previously, MVN binds to carbohydrate and the highest signals are observed with structures that contain α(1→2) linked mannose residues [1]. A binding partner of MVN was identified in the lipopolysaccharide (LPS) fraction of M. aeruginosa PCC7806 and it possibly represents the O-antigen of a LPS. MVN has been previously expressed in E. coli and its binding effect to cyanobacteria cells is species-specific [1].
Reference
1.Kehr, J. C., Zilliges, Y., Springer, A., Disney, M. D., Ratner, D. D., Bouchier, C., ... & Dittmann, E. (2006). A mannan binding lectin is involved in cell–cell attachment in a toxic strain of Microcystis aeruginosa. Molecular microbiology, 59(3), 893-906.
- ↑ Piñero-Lambea, C., Bodelón, G., Fernández-Periáñez, R., Cuesta, A. M., Álvarez-Vallina, L., & Fernández, L. Á. (2015). Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synthetic Biology, 4(4), 463–473. https://doi.org/10.1021/sb500252a