Difference between revisions of "Part:BBa K4814004"

 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
__NOTOC__
 +
<partinfo>BBa_K4814004 short</partinfo>
 +
 
To further design a system that can detect DNA breaks in vivo, we proposed a FRET (Förster resonance energy transfer) system using the interaction between ATRIP and RPA1.  
 
To further design a system that can detect DNA breaks in vivo, we proposed a FRET (Förster resonance energy transfer) system using the interaction between ATRIP and RPA1.  
 
The ATR (ATMand Rad3-related) and ATRIP (ATR-Interacting protein) form a complex under the circumstances of DNA damage (Qinhui Rao et. al., 2017) (Nam, E. A., & Cortez, D., 2011).  
 
The ATR (ATMand Rad3-related) and ATRIP (ATR-Interacting protein) form a complex under the circumstances of DNA damage (Qinhui Rao et. al., 2017) (Nam, E. A., & Cortez, D., 2011).  
 
Due to the double-strand breaks (DSBs), replication protein A (RPA) will bind to the single-stranded DNA (ssDNA) and recruit ATRIP complex. An earlier research (Zou, L., & Elledge, S. J., 2003) demonstrated that the RPA-ssDNA-ATRIP interaction is important in checkpoint signaling. To be specific, the RPA70 (RPA1) N-terminus interacts with the ATRIP N-termius (Ball, H. L., Myers, J. S., & Cortez, D., 2005).  
 
Due to the double-strand breaks (DSBs), replication protein A (RPA) will bind to the single-stranded DNA (ssDNA) and recruit ATRIP complex. An earlier research (Zou, L., & Elledge, S. J., 2003) demonstrated that the RPA-ssDNA-ATRIP interaction is important in checkpoint signaling. To be specific, the RPA70 (RPA1) N-terminus interacts with the ATRIP N-termius (Ball, H. L., Myers, J. S., & Cortez, D., 2005).  
 +
 +
* Click here for the experiment data: <html><a href="https://parts.igem.org/Part:BBa_K4814006">ATRIP-EGFP BBa_K4814006</a></html> and <html><a href="https://parts.igem.org/Part:BBa_K4814008">ATRIP-ECFP BBa_K4814008</a></html>
  
 
References:
 
References:
Line 16: Line 21:
 
Sequence derived from: https://www.uniprot.org/uniprotkb/Q8WXE1/entry
 
Sequence derived from: https://www.uniprot.org/uniprotkb/Q8WXE1/entry
 
https://www.ncbi.nlm.nih.gov/gene/84126
 
https://www.ncbi.nlm.nih.gov/gene/84126
 +
 +
<!-- -->
 +
<span class='h3bb'>Sequence and Features</span>
 +
<partinfo>BBa_K4814004 SequenceAndFeatures</partinfo>
 +
 +
 +
<!-- Uncomment this to enable Functional Parameter display
 +
===Functional Parameters===
 +
<partinfo>BBa_K4814004 parameters</partinfo>
 +
<!-- -->

Latest revision as of 10:17, 12 October 2023

ATRIP (human)

To further design a system that can detect DNA breaks in vivo, we proposed a FRET (Förster resonance energy transfer) system using the interaction between ATRIP and RPA1. The ATR (ATMand Rad3-related) and ATRIP (ATR-Interacting protein) form a complex under the circumstances of DNA damage (Qinhui Rao et. al., 2017) (Nam, E. A., & Cortez, D., 2011). Due to the double-strand breaks (DSBs), replication protein A (RPA) will bind to the single-stranded DNA (ssDNA) and recruit ATRIP complex. An earlier research (Zou, L., & Elledge, S. J., 2003) demonstrated that the RPA-ssDNA-ATRIP interaction is important in checkpoint signaling. To be specific, the RPA70 (RPA1) N-terminus interacts with the ATRIP N-termius (Ball, H. L., Myers, J. S., & Cortez, D., 2005).

References:

Qinhui Rao et. al. (2017). Cryo-EM structure of human ATR-ATRIP complex. Cell Research (2017) :1-1.

Nam, E. A., & Cortez, D. (2011). ATR signalling: more than meeting at the fork. The Biochemical journal, 436(3), 527–536. https://doi.org/10.1042/BJ20102162

Ball, H. L., Myers, J. S., & Cortez, D. (2005). ATRIP binding to replication protein A-single-stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation. Molecular biology of the cell, 16(5), 2372–2381. https://doi.org/10.1091/mbc.e04-11-1006

Zou, L., & Elledge, S. J. (2003). Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science (New York, N.Y.), 300(5625), 1542–1548. https://doi.org/10.1126/science.1083430


Sequence derived from: https://www.uniprot.org/uniprotkb/Q8WXE1/entry https://www.ncbi.nlm.nih.gov/gene/84126

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 1193
    Illegal BsaI.rc site found at 1381
    Illegal SapI site found at 2205