Difference between revisions of "Part:BBa K4579036"

 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
  
 
__NOTOC__
 
__NOTOC__
<partinfo>BBa_K4579035 short</partinfo>
+
<partinfo>BBa_K4579036 short</partinfo>
 +
<h1>Introduction</h1>
 +
The 2023 UT Austin iGEM Team’s modular microcin expression parts collection includes parts necessary for engineering a bacterial chassis to secrete microcins, a type of small antimicrobial peptide. Our team has specifically designed parts to engineer a modular two-plasmid system that facilitates extracellular secretion of microcins by the chassis. One plasmid contains the microcin with a signal peptide sequence that indicates to the cell that the microcin is to be secreted. The other plasmid (pSK01) is from the literature (Kim et al., 2023) and contains genes for the proteins CvaA and CvaB, which are necessary to secrete small peptides using the <i>E. coli</i> microcin V (MccV) type I secretion system (T1SS) shown in Figure 2 of our <html><a href="https://2023.igem.wiki/austin-utexas/description">Project Description.</a></html>
  
Following the part type standard of the Bee Toolkit created by Leonard et al., pBTK300 is a type 4 part that consists of the rpoC terminator.
+
Our parts collection includes a a selection of promoter (Type 2), coding sequence (Type 3), and terminator/regulatory gene (Type 4) parts that can be easily assembled to express microcins either constitutively or under inducible control. This allows for the modular engineering of microcin expression plasmids containing various microcins that can undergo extracellular secretion when used in conjunction with the secretion system plasmid pSK01.
  
For additional info on the BTK standard, see: Leonard, S. P., Perutka, J., Powell, J. E., Geng, P., Richhart, D. D., Byrom, M., ... & Barrick, J. E. (2018). Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. ACS Synthetic Biology, 7(5), 1279-1290.
+
<html><center><img src=https://static.igem.wiki/teams/4579/wiki/parts-collection-by-type.jpeg style="width:900px;height:auto;"></center></html>
 +
<center><b>Figure 1.</b> <i>Basic parts categorized by their BTK/YTK part type. Type 3p and 3q parts assemble as if they were a single Type 3 part.</i> </center>
  
<!-- Add more about the biology of this part here
+
Our basic and composite parts follow the Bee Toolkit/Yeast Toolkit standard of Golden Gate assembly (Lee et al., 2015; Leonard et al., 2018). Our assembly method involves the use of BsmBI digestion-ligation to create basic parts which can then be further digested with BsaI and ligated to form composite parts. The BTK/YTK standard includes part type-specific prefix and suffix overhangs generated by BsaI for each part, and these overhangs are NOT included in their sequences in the registry. For reference, our standard’s part type-specific overhangs are listed in Figure 2 on our <html><a href=" https://2023.igem.wiki/austin-utexas/parts">Parts page</a></html>.
===Usage and Biology===
+
 
 +
<h1>Categorization</h1>
 +
 
 +
===Basic parts===
 +
<ul>
 +
<li><b>Promoters (Type 2)</b> – Seven inducible promoters selected due to their relatively high dynamic range (Meyer et al., 2019) and apparent functionality in a variety of Proteobacteria (Schuster & Reisch, 2021), and one constitutive CP25 promoter (Leonard et al., 2018).</li>
 +
 
 +
<li><b>Coding Sequences (Type 3)</b> – Signal peptide + microcin fusion coding sequences, a green fluorescent protein gene, and secretion system genes <i>cvaA</i> and <i>cvaB</i> which are together referred to as CvaAB.</li>
 +
 
 +
<li><b>Terminators/Regulatory Genes (Type 4)</b> – An <i>rpoC</i> terminator plus a collection of seven regulatory genes, each associated with one of our seven inducible promoters.</li>
 +
</ul>
 +
 
 +
===Composite parts===
 +
<ul>
 +
<li><b>Constitutive Microcin Expression Assemblies</b> - Assemblies of microcins (some with immunity proteins) with a constitutive CP25 promoter and <i>rpoC</i> terminator. These function alongside pSK01 in a two-plasmid secretion system, and we use these two-plasmid systems to assess if our novel microcins are effective inhibitors of pathogenic targets.</li>
 +
 
 +
<li><b>Inducible GFP Expression Assemblies</b> – Assemblies of GFP under the control of various inducible promoter systems. These were used to assess the dynamic range of our inducible promoter systems.</li>
 +
 
 +
<li><b>Inducible Microcin Expression Assemblies</b> – Assemblies of select microcins under the control of an inducible promoter system.</li>
 +
</ul>
 +
 
 +
 
 +
 
 +
<h1>Usage and Biology</h1>
 +
pBTK300 is a Type 4 part from the Bee Toolkit (Leonard et al., 2018) that contains the <i>rpoC</i> terminator sequence. We use this part in our constitutive microcin expression assemblies as a transcriptional terminator placed downstream of the microcin or microcin + immunity protein coding sequence. This is used as the terminator for all of our team's constitutive microcin expression assemblies (<html><a href=" https://parts.igem.org/Part:BBa_K4579039">BBa_K4579039</a></html> – <html><a href=" https://parts.igem.org/Part:BBa_K4579051">BBa_K4579051</a></html>).
 +
 
 +
<h1>Design Notes</h1>
 +
This part was not designed by the UT Austin iGEM Team. It originates from the Bee Toolkit (Leonard et al., 2018).
 +
 
 +
<h1>Characterization</h1>
 +
This part was used as the terminator for all of our constitutive microcin expression assemblies (<html><a href=" https://parts.igem.org/Part:BBa_K4579039">BBa_K4579039</a></html> – <html><a href=" https://parts.igem.org/Part:BBa_K4579051">BBa_K4579051</a></html>). For characterization data on these, please see their Characterization sections.
 +
 
 +
<h1>Source</h1>
 +
This part originates from the Bee Toolkit (Leonard et al., 2018).
 +
 
 +
<h1>References</h1>
 +
<ol>
 +
<li>Cole, T. J., Parker, J. K., Feller, A. L., Wilke, C. O., & Davies, B. W. (2022). Evidence for widespread class II microcins in Enterobacterales Genomes. <i>Applied and Environmental Microbiology, 88</i>(23), e01486-22.</li>
 +
 
 +
<li>Kim, S. Y., Parker, J. K., Gonzalez-Magaldi, M., Telford, M. S., Leahy, D. J., & Davies, B. W. (2023). Export of Diverse and Bioactive Small Proteins through a Type I Secretion System. <i>Applied and Environmental Microbiology, 89</i>(5), e00335-23.</li>
 +
 
 +
<li>Lee, M. E., DeLoache, W. C., Cervantes, B., & Dueber, J. E. (2015). A highly characterized yeast toolkit for modular, multipart assembly. <i>ACS Synthetic Biology, 4</i>(9), 975-986.</li>
 +
 
 +
<li>Leonard, S. P., Perutka, J., Powell, J. E., Geng, P., Richhart, D. D., Byrom, M., Kar, S., Davies, B. W., Ellington, D. E., Moran, N. A., & Barrick, J. E. (2018). Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. <i>ACS Synthetic Biology, 7</i>(5), 1279-1290.</li>
 +
 
 +
<li>Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J., & Voigt, C. A. (2019). Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. <i>Nature Chemical Biology, 15</i>(2), 196-204.</li>
 +
 
 +
<li>Schuster, L. A., & Reisch, C. R. (2021). A plasmid toolbox for controlled gene expression across the Proteobacteria. <i>Nucleic Acids Research, 49</i>(12), 7189-7202.</li>
 +
</ol>
  
 
<!-- -->
 
<!-- -->
<span class='h3bb'>Sequence and Features</span>
+
<h1>Sequence and Features</h1>  
 
<partinfo>BBa_K4579035 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K4579035 SequenceAndFeatures</partinfo>
  

Latest revision as of 09:16, 12 October 2023


pBTK300 - rpoC terminator

Introduction

The 2023 UT Austin iGEM Team’s modular microcin expression parts collection includes parts necessary for engineering a bacterial chassis to secrete microcins, a type of small antimicrobial peptide. Our team has specifically designed parts to engineer a modular two-plasmid system that facilitates extracellular secretion of microcins by the chassis. One plasmid contains the microcin with a signal peptide sequence that indicates to the cell that the microcin is to be secreted. The other plasmid (pSK01) is from the literature (Kim et al., 2023) and contains genes for the proteins CvaA and CvaB, which are necessary to secrete small peptides using the E. coli microcin V (MccV) type I secretion system (T1SS) shown in Figure 2 of our Project Description.

Our parts collection includes a a selection of promoter (Type 2), coding sequence (Type 3), and terminator/regulatory gene (Type 4) parts that can be easily assembled to express microcins either constitutively or under inducible control. This allows for the modular engineering of microcin expression plasmids containing various microcins that can undergo extracellular secretion when used in conjunction with the secretion system plasmid pSK01.

Figure 1. Basic parts categorized by their BTK/YTK part type. Type 3p and 3q parts assemble as if they were a single Type 3 part.

Our basic and composite parts follow the Bee Toolkit/Yeast Toolkit standard of Golden Gate assembly (Lee et al., 2015; Leonard et al., 2018). Our assembly method involves the use of BsmBI digestion-ligation to create basic parts which can then be further digested with BsaI and ligated to form composite parts. The BTK/YTK standard includes part type-specific prefix and suffix overhangs generated by BsaI for each part, and these overhangs are NOT included in their sequences in the registry. For reference, our standard’s part type-specific overhangs are listed in Figure 2 on our Parts page.

Categorization

Basic parts

  • Promoters (Type 2) – Seven inducible promoters selected due to their relatively high dynamic range (Meyer et al., 2019) and apparent functionality in a variety of Proteobacteria (Schuster & Reisch, 2021), and one constitutive CP25 promoter (Leonard et al., 2018).
  • Coding Sequences (Type 3) – Signal peptide + microcin fusion coding sequences, a green fluorescent protein gene, and secretion system genes cvaA and cvaB which are together referred to as CvaAB.
  • Terminators/Regulatory Genes (Type 4) – An rpoC terminator plus a collection of seven regulatory genes, each associated with one of our seven inducible promoters.

Composite parts

  • Constitutive Microcin Expression Assemblies - Assemblies of microcins (some with immunity proteins) with a constitutive CP25 promoter and rpoC terminator. These function alongside pSK01 in a two-plasmid secretion system, and we use these two-plasmid systems to assess if our novel microcins are effective inhibitors of pathogenic targets.
  • Inducible GFP Expression Assemblies – Assemblies of GFP under the control of various inducible promoter systems. These were used to assess the dynamic range of our inducible promoter systems.
  • Inducible Microcin Expression Assemblies – Assemblies of select microcins under the control of an inducible promoter system.


Usage and Biology

pBTK300 is a Type 4 part from the Bee Toolkit (Leonard et al., 2018) that contains the rpoC terminator sequence. We use this part in our constitutive microcin expression assemblies as a transcriptional terminator placed downstream of the microcin or microcin + immunity protein coding sequence. This is used as the terminator for all of our team's constitutive microcin expression assemblies (BBa_K4579039BBa_K4579051).

Design Notes

This part was not designed by the UT Austin iGEM Team. It originates from the Bee Toolkit (Leonard et al., 2018).

Characterization

This part was used as the terminator for all of our constitutive microcin expression assemblies (BBa_K4579039BBa_K4579051). For characterization data on these, please see their Characterization sections.

Source

This part originates from the Bee Toolkit (Leonard et al., 2018).

References

  1. Cole, T. J., Parker, J. K., Feller, A. L., Wilke, C. O., & Davies, B. W. (2022). Evidence for widespread class II microcins in Enterobacterales Genomes. Applied and Environmental Microbiology, 88(23), e01486-22.
  2. Kim, S. Y., Parker, J. K., Gonzalez-Magaldi, M., Telford, M. S., Leahy, D. J., & Davies, B. W. (2023). Export of Diverse and Bioactive Small Proteins through a Type I Secretion System. Applied and Environmental Microbiology, 89(5), e00335-23.
  3. Lee, M. E., DeLoache, W. C., Cervantes, B., & Dueber, J. E. (2015). A highly characterized yeast toolkit for modular, multipart assembly. ACS Synthetic Biology, 4(9), 975-986.
  4. Leonard, S. P., Perutka, J., Powell, J. E., Geng, P., Richhart, D. D., Byrom, M., Kar, S., Davies, B. W., Ellington, D. E., Moran, N. A., & Barrick, J. E. (2018). Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. ACS Synthetic Biology, 7(5), 1279-1290.
  5. Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J., & Voigt, C. A. (2019). Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nature Chemical Biology, 15(2), 196-204.
  6. Schuster, L. A., & Reisch, C. R. (2021). A plasmid toolbox for controlled gene expression across the Proteobacteria. Nucleic Acids Research, 49(12), 7189-7202.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal SapI.rc site found at 13