Difference between revisions of "Part:BBa K4759044"

(Usage and Biology)
Line 6: Line 6:
  
 
===Usage and Biology===
 
===Usage and Biology===
Through extensive reading of the literature, we summarized 11 pairs of redox partners with good results. After that, we screened four pairs of redox partners with good effects by molecular docking and mathematical modeling and then verified them experimentally.
+
Generally, the method of determining whether the redox partners was suitable required tedious steps such as the construction of plasmids, heterologous expression, construction of catalytic systems, and detection of conversion rate after catalysis. Therefore, we wanted to find a convenient way to do a quick screening. We used the fluorescent protein sfGFP and successfully constructed a sensor to detect redox partners.  
Generally, the method of determining whether the redox partner is suitable is through tedious steps such as the construction of plasmids, heterologous expression, construction of catalytic systems, and detection of conversion rate after catalysis. Therefore, we wanted to find a convenient way to do a quick screening. We used the fluorescent protein sfGFP to successfully construct a sensor to detect redox partners. sfGFP is a superfolder fluorescent protein that emits green light when irradiated with ultraviolet light. What is special about it is that it can be broken into two parts. 
+
We divided sfGFP into N-terminal and C-terminal, and although these two parts were cut off, there was an interaction force between them. Thus, four iron redox proteins were fused to the N-terminal of sfGFP-1-10 and Olep to the C-terminal of sfGFP-11, respectively, to obtain the recombinant plasmid pRSFDuet-BM3-GFP-1-10-GFP-11-oleP, pRSFDuet-camA-camB-GFP-1-10-GFP-11-oleP, pRSFDuet-FdR_0978-Fdx_1499-GFP-1-10-GFP-11-oleP, and pRSFDuet-petH-petF-GFP-1-10-GFP-11-oleP.
We divide sfGFP into sfGFP-1-10 and sfGFP-11, and although these two parts are cut off, there is an interaction force between them, and as long as they are properly folded in space, they will emit light again. Thus, four iron redox proteins are fused to the N-terminus of sfGFP-1-10 and Olep to the C-terminus of sfGFP-11, respectively, to obtain the recombinant plasmid pRSFDuet-BM3-GFP-1-10-GFP-11-oleP, pRSFDuet-camA-camB-GFP-1-10-GFP-11-oleP, pRSFDuet-FdR_0978-Fdx_1499-GFP-1-10-GFP-11-oleP, pRSFDuet-petH-petF-GFP-1-10-GFP-11-oleP  
+
The above four recombinant plasmids were converted to BL21(DE3) to obtain recombinant strains G2 to G5.
 
+
The above four recombinant plasmids are converted to BL21(DE3) to obtain recombinant strains G2 strain to G5 strain.  
+
  
 
https://static.igem.wiki/teams/4759/wiki/4-1.png
 
https://static.igem.wiki/teams/4759/wiki/4-1.png
Line 16: Line 14:
 
Fig1: The self-assembly of Olep and Fdx based on the three-dimensional structure of sfGFP (PDB: 5BT0)
 
Fig1: The self-assembly of Olep and Fdx based on the three-dimensional structure of sfGFP (PDB: 5BT0)
  
The recombinant strains G2 to G5 are subjected to shaker fermentation experiments. After the fermentation is completed, 200 ul bacteria are added to the 96-well plate with a microplate reader to determine biomass (wavelength 600 nm) and fluorescence value (excitation wavelength 488 nm, emission wavelength 520 nm). Calculate the fluorescence intensity (fluorescence value/biomass) of the strain. The fluorescence intensity of the recombinant strain G5 (containing recombinant plasmid pRSFDuet-petH-petF-GFP-1-10-GFP-11-olep) is the highest (1.2×106) and 6 times higher than that of the control strain G2 (containing recombinant plasmid pRSFDuet-camA-camB-GFP-1-10-GFP-11-olep).
+
The recombinant strains G2 to G5 were subjected to shaker fermentation experiments. After the fermentation was completed, 200 ul bacteria were added to the 96-well plate with a microplate reader to determine biomass (wavelength 600 nm) and fluorescence value (excitation wavelength 488 nm, emission wavelength 520 nm). Then we calculated the fluorescence intensity (fluorescence value/biomass) of the strain. The fluorescence intensity of the recombinant strain G5 (containing recombinant plasmid pRSFDuet-petH-petF-GFP-1-10-GFP-11-olep) was the highest (1.2×106) and 6 times higher than that of the control strain G2 (containing recombinant plasmid pRSFDuet-camA-camB-GFP-1-10-GFP-11-olep).
  
 
https://static.igem.wiki/teams/4759/wiki/4-2.png
 
https://static.igem.wiki/teams/4759/wiki/4-2.png
Line 22: Line 20:
 
Fig2: BL21 morphology diagram seen under excitation light 488nm and emitted light 520nm, green is green fluorescence of sfGFP
 
Fig2: BL21 morphology diagram seen under excitation light 488nm and emitted light 520nm, green is green fluorescence of sfGFP
  
We selected four conventional redox partners (BM3, CamA/CamB, SelFdR_0978/SelFdx_1499, petH/petF) in combination with the P450 enzyme. Four groups of redox partners are constructed on the high-copy plasmid pRSFDuet to obtain recombinant plasmids: pRSFDuet-BM3-olep, pRSFDuet-camA-camB-olep, pRSFDuet-FdR0978-Fdx1499-olep, and pRSFDuet-petH-petF-olep. and transformed to C41 (DE3) to obtain the recombinant strain R2 strain to R5 strain. The recombinant strains G2 to G5 are subjected to shaker fermentation experiments. The recombinant strain R5 (containing recombinant plasmid pRSFDuet-petH-petF-olep) has the highest conversion rate, significantly increasing from 41.4% to 85.6%. Therefore, the redox companion PetH/PetF derived from Synechocystis is successfully screened as the most suitable redox partner for the P450 enzyme Olep, and the construction of the sfGFP sensor is verified, which could efficiently and accurately screen the redox partner adapted by the P450 enzyme.
+
We selected four conventional redox partners (BM3, CamA/CamB, SelFdR0978/SelFdx1499, PetH/PetF) in combination with the P450 enzyme. Four groups of redox partners were constructed on the high-copy plasmid pRSFDuet to obtain recombinant plasmids: pRSFDuet-BM3-olep, pRSFDuet-camA-camB-olep, pRSFDuet-FdR0978-Fdx1499-olep, and pRSFDuet-petH-petF-olep. Then they were transformed to C41 (DE3) to obtain the recombinant strain R2 to R5. The recombinant strains R2 to R5 were subjected to shaker fermentation experiments.
 
<!-- -->
 
<!-- -->
 
<span class='h3bb'>Sequence and Features</span>
 
<span class='h3bb'>Sequence and Features</span>

Revision as of 18:03, 11 October 2023


RBM3-linker-GFP1-10

The P450 enzymes are redox-dependent proteins, through which they source electrons from reducing cofactors to drive their activities.

Usage and Biology

Generally, the method of determining whether the redox partners was suitable required tedious steps such as the construction of plasmids, heterologous expression, construction of catalytic systems, and detection of conversion rate after catalysis. Therefore, we wanted to find a convenient way to do a quick screening. We used the fluorescent protein sfGFP and successfully constructed a sensor to detect redox partners. We divided sfGFP into N-terminal and C-terminal, and although these two parts were cut off, there was an interaction force between them. Thus, four iron redox proteins were fused to the N-terminal of sfGFP-1-10 and Olep to the C-terminal of sfGFP-11, respectively, to obtain the recombinant plasmid pRSFDuet-BM3-GFP-1-10-GFP-11-oleP, pRSFDuet-camA-camB-GFP-1-10-GFP-11-oleP, pRSFDuet-FdR_0978-Fdx_1499-GFP-1-10-GFP-11-oleP, and pRSFDuet-petH-petF-GFP-1-10-GFP-11-oleP. The above four recombinant plasmids were converted to BL21(DE3) to obtain recombinant strains G2 to G5.

4-1.png

Fig1: The self-assembly of Olep and Fdx based on the three-dimensional structure of sfGFP (PDB: 5BT0)

The recombinant strains G2 to G5 were subjected to shaker fermentation experiments. After the fermentation was completed, 200 ul bacteria were added to the 96-well plate with a microplate reader to determine biomass (wavelength 600 nm) and fluorescence value (excitation wavelength 488 nm, emission wavelength 520 nm). Then we calculated the fluorescence intensity (fluorescence value/biomass) of the strain. The fluorescence intensity of the recombinant strain G5 (containing recombinant plasmid pRSFDuet-petH-petF-GFP-1-10-GFP-11-olep) was the highest (1.2×106) and 6 times higher than that of the control strain G2 (containing recombinant plasmid pRSFDuet-camA-camB-GFP-1-10-GFP-11-olep).

4-2.png

Fig2: BL21 morphology diagram seen under excitation light 488nm and emitted light 520nm, green is green fluorescence of sfGFP

We selected four conventional redox partners (BM3, CamA/CamB, SelFdR0978/SelFdx1499, PetH/PetF) in combination with the P450 enzyme. Four groups of redox partners were constructed on the high-copy plasmid pRSFDuet to obtain recombinant plasmids: pRSFDuet-BM3-olep, pRSFDuet-camA-camB-olep, pRSFDuet-FdR0978-Fdx1499-olep, and pRSFDuet-petH-petF-olep. Then they were transformed to C41 (DE3) to obtain the recombinant strain R2 to R5. The recombinant strains R2 to R5 were subjected to shaker fermentation experiments. Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 2430
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 1339
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 385
    Illegal BsaI.rc site found at 1309
    Illegal SapI.rc site found at 865
    Illegal SapI.rc site found at 1465