Difference between revisions of "Part:BBa K4765107"

(Usage and Biology)
Line 8: Line 8:
 
INPNC-Ag3 fusion is composed of a surface display system (INPNC+linker) and the coding sequence of a nanobody. INPNC exhibits compatibility with the translocation and surface display of proteins containing multiple cofactors and disulfide bond-containing passengers<ref>van Bloois, E., Winter, R. T., Kolmar, H., & Fraaije, M. W. (2011). Decorating microbes: Surface display of proteins on ''Escherichia coli''. ''Trends in Biotechnology, 29''(2), 79–86. https://doi.org/10.1016/j.tibtech.2010.11.003</ref>.Ag3 is a corresponding antigen of [https://parts.igem.org/Part:BBa_K4765007 BBa_K4765007(Nb3)]<ref>Glass, D. S., & Riedel-Kruse, I. H. (2018). A Synthetic Bacterial Cell-Cell Adhesion Toolbox for Programming Multicellular Morphologies and Patterns. ''Cell, 174''(3), 649-658.e16. https://doi.org/10.1016/j.cell.2018.06.041
 
INPNC-Ag3 fusion is composed of a surface display system (INPNC+linker) and the coding sequence of a nanobody. INPNC exhibits compatibility with the translocation and surface display of proteins containing multiple cofactors and disulfide bond-containing passengers<ref>van Bloois, E., Winter, R. T., Kolmar, H., & Fraaije, M. W. (2011). Decorating microbes: Surface display of proteins on ''Escherichia coli''. ''Trends in Biotechnology, 29''(2), 79–86. https://doi.org/10.1016/j.tibtech.2010.11.003</ref>.Ag3 is a corresponding antigen of [https://parts.igem.org/Part:BBa_K4765007 BBa_K4765007(Nb3)]<ref>Glass, D. S., & Riedel-Kruse, I. H. (2018). A Synthetic Bacterial Cell-Cell Adhesion Toolbox for Programming Multicellular Morphologies and Patterns. ''Cell, 174''(3), 649-658.e16. https://doi.org/10.1016/j.cell.2018.06.041
 
</ref>. The interaction between Ag-Nb can mediate specific adhesion of ''Escherichia coli''. A flexible protein domain linker of 10 aa was introduced between INPNC and Ag3 to ensure independent functionality of Ag3 and INPNC with minimal mutual disruption.
 
</ref>. The interaction between Ag-Nb can mediate specific adhesion of ''Escherichia coli''. A flexible protein domain linker of 10 aa was introduced between INPNC and Ag3 to ensure independent functionality of Ag3 and INPNC with minimal mutual disruption.
We’ve constructed this fusion protein into our ribozyme-assisted polycistronic co-expression system:pRAP.
 
  
 
===Usage and Biology===
 
===Usage and Biology===

Revision as of 11:36, 11 October 2023

Twister P1 + T7_RBS + INPNC-Ag3 fusion + stem-loop

contributed by Fudan iGEM 2023

introduction

INPNC-Ag3 fusion is composed of a surface display system (INPNC+linker) and the coding sequence of a nanobody. INPNC exhibits compatibility with the translocation and surface display of proteins containing multiple cofactors and disulfide bond-containing passengers[1].Ag3 is a corresponding antigen of BBa_K4765007(Nb3)[2]. The interaction between Ag-Nb can mediate specific adhesion of Escherichia coli. A flexible protein domain linker of 10 aa was introduced between INPNC and Ag3 to ensure independent functionality of Ag3 and INPNC with minimal mutual disruption.

Usage and Biology

The surface-displayed antigen can specifically interact with the nanobody produced by BBa_K4765108.

Characterization

Sequencing map

contributed by Fudan iGEM 2023
Figure 1. Sequencing map of INPNC-Ag3 fusion

Sequencing is performed using the primer:Kan-F: 5-ATTCTCACCGGATTCAGT-3.

Selection through Aggregation Assay

Get details in BBa_K4765108.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Unknown
  • 21
    INCOMPATIBLE WITH RFC[21]
    Unknown
  • 23
    INCOMPATIBLE WITH RFC[23]
    Unknown
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 133
    Illegal NgoMIV site found at 466
    Illegal AgeI site found at 490
  • 1000
    COMPATIBLE WITH RFC[1000]


Reference

  1. van Bloois, E., Winter, R. T., Kolmar, H., & Fraaije, M. W. (2011). Decorating microbes: Surface display of proteins on Escherichia coli. Trends in Biotechnology, 29(2), 79–86. https://doi.org/10.1016/j.tibtech.2010.11.003
  2. Glass, D. S., & Riedel-Kruse, I. H. (2018). A Synthetic Bacterial Cell-Cell Adhesion Toolbox for Programming Multicellular Morphologies and Patterns. Cell, 174(3), 649-658.e16. https://doi.org/10.1016/j.cell.2018.06.041