Difference between revisions of "Part:BBa K4614002:Experience"
(→Applications of BBa_K4614002) |
|||
Line 48: | Line 48: | ||
According to the transmission electron microscope observation, we found that R5 is anchored on the surface of E. coli, in the siliconization system of TEOS, catalytic TEOS hydrolysis to silica, and deposited on the surface of the bacteria, formed silicon shell on the surface of R5-E.coli . Observing the morphology of the bacteria, we found that the bacterial cells in the experimental group were normal in morphology, the cell wall was complete and smooth, while the control group had incomplete bacterial cell walls and different degrees of deformation. To a certain extent, it shows that the silicon shell formed on the surface of the bacteria has a certain protective effect on the bacteria and provides a certain rigidity. | According to the transmission electron microscope observation, we found that R5 is anchored on the surface of E. coli, in the siliconization system of TEOS, catalytic TEOS hydrolysis to silica, and deposited on the surface of the bacteria, formed silicon shell on the surface of R5-E.coli . Observing the morphology of the bacteria, we found that the bacterial cells in the experimental group were normal in morphology, the cell wall was complete and smooth, while the control group had incomplete bacterial cell walls and different degrees of deformation. To a certain extent, it shows that the silicon shell formed on the surface of the bacteria has a certain protective effect on the bacteria and provides a certain rigidity. | ||
</p> | </p> | ||
+ | </html> | ||
+ | References of CAU_China | ||
+ | |||
+ | [1]薛双红. 基于细菌表面展示技术的功能性无机材料合成研究[D].武汉理工大学,2019. | ||
===User Reviews=== | ===User Reviews=== | ||
<!-- DON'T DELETE --><partinfo>BBa_K4614002 StartReviews</partinfo> | <!-- DON'T DELETE --><partinfo>BBa_K4614002 StartReviews</partinfo> |
Revision as of 01:13, 11 October 2023
This experience page is provided so that any user may enter their experience using this part.
Please enter
how you used this part and how it worked out.
Applications of BBa_K4614002
We constructed an expression vector of R5 and its surface display carrier protein IPN (encoded by Lnak) fusion protein, using T7 promoter as the promoter, and induced expression, and after reviewing the literature, we selected to induce 3 h at 37 °C at a final concentration of 1.0 ug/mL in the logarithmic phase, disrupted the bacteria, and performed Western blotting experiments on the supernatant and precipitation of the cell disruption solution to verify the expression of the protein of interest.
Fig1.Bacterial holoprotein Western blotting development result
We silicified the mutant strains using the method of silicification of bacteria obtained from the literature, and the control group did the same, we collected the silicified bacteria and observed the bacteria using transmission electron microscopy to obtain the silicification effect of R5 under the silicification conditions we used.
Fig7.Transmission electron microscope image
According to the transmission electron microscope observation, we found that R5 is anchored on the surface of E. coli, in the siliconization system of TEOS, catalytic TEOS hydrolysis to silica, and deposited on the surface of the bacteria, formed silicon shell on the surface of R5-E.coli . Observing the morphology of the bacteria, we found that the bacterial cells in the experimental group were normal in morphology, the cell wall was complete and smooth, while the control group had incomplete bacterial cell walls and different degrees of deformation. To a certain extent, it shows that the silicon shell formed on the surface of the bacteria has a certain protective effect on the bacteria and provides a certain rigidity.
References of CAU_China[1]薛双红. 基于细菌表面展示技术的功能性无机材料合成研究[D].武汉理工大学,2019.
User Reviews
UNIQ310667716539fd3e-partinfo-00000001-QINU UNIQ310667716539fd3e-partinfo-00000002-QINU