Difference between revisions of "Part:BBa K4665170"
(→Biology and Usage) |
(→Biology and Usage) |
||
Line 11: | Line 11: | ||
The staple sequences below were acquired using an algorithm, resulting in the desired octahedral form. The octahedral structure was chosen for its thermodynamic stability, resisting disassembly or rearrangement (Julie et al., 2020). After careful analysis, it was determined that triangular structures have the highest mechanical strength (Tandon, 2021); however, the simplicity of the shape would reduce the surface area needed for nucleation. Hence, the octahedron was chosen as the base of the lattice. | The staple sequences below were acquired using an algorithm, resulting in the desired octahedral form. The octahedral structure was chosen for its thermodynamic stability, resisting disassembly or rearrangement (Julie et al., 2020). After careful analysis, it was determined that triangular structures have the highest mechanical strength (Tandon, 2021); however, the simplicity of the shape would reduce the surface area needed for nucleation. Hence, the octahedron was chosen as the base of the lattice. | ||
− | + | https://static.igem.wiki/teams/4665/wiki/parts-registration-images/staplesequences.png | |
To get the ssDNA sequence a pScaf phagemid with insert for generating DNA origami was used. | To get the ssDNA sequence a pScaf phagemid with insert for generating DNA origami was used. |
Revision as of 09:13, 8 October 2023
Octahedron DNA-origami (3024bp long; 42bp edges)
Biology and Usage
DNA origami is a technique that allows for the fabrication of complex nanostructures through guided DNA folding (Majikes & Liddle, 2021). The process involves designing a long ssDNA molecule, referred to as a scaffold, which acts as a backbone for the assembly. The long strand of ssDNA will then be folded into the wanted format using short ssDNA fragments called staples. Almost any form can be achieved by altering the staple sequences.
For the purpose of our project, Sublimestone, an octahedral 3D lattice form was chosen that acted as a nucleation site for the second module of our project, calcite mineralization.
The staple sequences below were acquired using an algorithm, resulting in the desired octahedral form. The octahedral structure was chosen for its thermodynamic stability, resisting disassembly or rearrangement (Julie et al., 2020). After careful analysis, it was determined that triangular structures have the highest mechanical strength (Tandon, 2021); however, the simplicity of the shape would reduce the surface area needed for nucleation. Hence, the octahedron was chosen as the base of the lattice.
To get the ssDNA sequence a pScaf phagemid with insert for generating DNA origami was used.
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal PstI site found at 919
- 12INCOMPATIBLE WITH RFC[12]Illegal PstI site found at 919
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 738
Illegal BglII site found at 1310 - 23INCOMPATIBLE WITH RFC[23]Illegal PstI site found at 919
- 25INCOMPATIBLE WITH RFC[25]Illegal PstI site found at 919
Illegal NgoMIV site found at 132 - 1000COMPATIBLE WITH RFC[1000]