Difference between revisions of "Part:BBa K4767001"

 
Line 3: Line 3:
 
<partinfo>BBa_K4767001 short</partinfo>
 
<partinfo>BBa_K4767001 short</partinfo>
  
This part is an arsenic-responsive promoter that couples with the transcriptional regulator ArsR. It is from Escherichia coli genome which can response to the ArsR protein and block the transcription of downstream genes.
+
This part is an arsenic-responsive promoter that couples with the transcriptional regulator ArsR. It is from <i>Escherichia coli</i> genome which can response to the ArsR protein and block the transcription of downstream genes.
  
 
<!-- Add more about the biology of this part here
 
<!-- Add more about the biology of this part here
 
===Usage and Biology===
 
===Usage and Biology===
 
+
This operon was found in <i>E. coli</i>, which contains <i>arsR</i> (transcriptional regulator), <i>arsB</i> (arsenate permease), and <i>arsC</i> (arsenate reductase). When arsenic is absent, the transcription regulator ArsR binds to the ArsR-binding site (ABS) within the <i>ars</i> promoter and blocks transcription. Once arsenic is present, it binds to ArsR and changes the local structure of the promoter to activate the transcription of the <i>ars</i> genes and clear arsenic in the cell.
 
<!-- -->
 
<!-- -->
 
<span class='h3bb'>Sequence and Features</span>
 
<span class='h3bb'>Sequence and Features</span>
Line 13: Line 13:
  
  
<!-- Uncomment this to enable Functional Parameter display
+
 
 
===Functional Parameters===
 
===Functional Parameters===
 +
In 2023, CUG-China used this arsenic-responsive transcription system to detect arsenic. We placed <i>gfp</i> at downstream of the Pars -<i>arsR</i> system and demonstrated the As(Ⅲ) can bind the ArsR and drive the expression of <i>gfp</i>. As the figure shows, with an increase in  arsenic concentrations, the fluorescence intensity increased in response.
 +
 +
[[File:ptpa1.jpg]]
 +
 +
Figure 1. The fluorescence curves of <i>Shewanella oneidensis</i> MR1 cells with the arsenic-responsive transcription gene circuits.
 +
===References===
 +
Jia X, Bu R, Zhao T, et al. Sensitive and specific whole-cell biosensor for arsenic detection[J]. Applied and Environmental Microbiology, 2019, 85(11): e00694-19.
 
<partinfo>BBa_K4767001 parameters</partinfo>
 
<partinfo>BBa_K4767001 parameters</partinfo>
 
<!-- -->
 
<!-- -->

Revision as of 11:16, 5 October 2023


Pars

This part is an arsenic-responsive promoter that couples with the transcriptional regulator ArsR. It is from Escherichia coli genome which can response to the ArsR protein and block the transcription of downstream genes.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Functional Parameters

In 2023, CUG-China used this arsenic-responsive transcription system to detect arsenic. We placed gfp at downstream of the Pars -arsR system and demonstrated the As(Ⅲ) can bind the ArsR and drive the expression of gfp. As the figure shows, with an increase in arsenic concentrations, the fluorescence intensity increased in response.

File:Ptpa1.jpg

Figure 1. The fluorescence curves of Shewanella oneidensis MR1 cells with the arsenic-responsive transcription gene circuits.

References

Jia X, Bu R, Zhao T, et al. Sensitive and specific whole-cell biosensor for arsenic detection[J]. Applied and Environmental Microbiology, 2019, 85(11): e00694-19.