Difference between revisions of "Part:BBa K4719024"

 
Line 2: Line 2:
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K4719024 short</partinfo>
 
<partinfo>BBa_K4719024 short</partinfo>
 +
<br>
 +
<span class='h3bb'>Sequence and Features</span>
 +
<partinfo>BBa_K4719024 SequenceAndFeatures</partinfo>
 +
 +
==Introduction==
 +
Vilnius-Lithuania iGEM 2023 team's goal was to create a universal synthetic biology system for ''Komagataeibacter xylinus'' for ''in vivo'' bacterial cellulose polymer composition modification. Firstly, we chose to produce a cellulose-chitin polymer that would later be deacetylated, creating bacterial cellulose-chitosan. This polymer is an easily modifiable platform when compared to bacterial cellulose. The enhanced chemical reactivity of the bacterial cellulose-chitosan polymer allows for specific functionalizations in the biomedicine field, such as scaffold design. As a second approach, we designed indigo-dyed cellulose that could be used as a green chemistry way to apply cellulose in the textile industry. Lastly, we have achieved a composite of bacterial cellulose and polyhydroxybutyrate (PHB), which is synthesized by ''K. xylinus''.
 +
 +
==Usage and Biology==
 +
 +
ClCDA is chitin deacetylase isolated from fungus ''Colletotrichum lindemuthianum''. It catalyzes hydrolysis of N-acetamido groups in polymers containing N-acetyl-D-glucosamine monomers.  ClCDA requires Co2+ for its catalytical activity.
 +
<br>
 +
<br>
 +
ClCDA gene consists of two exons and encodes 248 amino acids including extracellular localization signal peptide. Coding sequence excluding signal peptide was cloned into pMAL-p5x-CL-StrepII vector containing MBP (maltose binding protein) sequence in N-terminal and Strep-tag II in C-terminal.
  
Chitin deacetylase capable of catalyzing reverse reaction.
 
  
<!-- Add more about the biology of this part here
 
===Usage and Biology===
 
  
<!-- -->
 
<span class='h3bb'>Sequence and Features</span>
 
<partinfo>BBa_K4719024 SequenceAndFeatures</partinfo>
 
  
  

Revision as of 20:30, 21 September 2023


ClCDA chitin deacetylase
Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

Introduction

Vilnius-Lithuania iGEM 2023 team's goal was to create a universal synthetic biology system for Komagataeibacter xylinus for in vivo bacterial cellulose polymer composition modification. Firstly, we chose to produce a cellulose-chitin polymer that would later be deacetylated, creating bacterial cellulose-chitosan. This polymer is an easily modifiable platform when compared to bacterial cellulose. The enhanced chemical reactivity of the bacterial cellulose-chitosan polymer allows for specific functionalizations in the biomedicine field, such as scaffold design. As a second approach, we designed indigo-dyed cellulose that could be used as a green chemistry way to apply cellulose in the textile industry. Lastly, we have achieved a composite of bacterial cellulose and polyhydroxybutyrate (PHB), which is synthesized by K. xylinus.

Usage and Biology

ClCDA is chitin deacetylase isolated from fungus Colletotrichum lindemuthianum. It catalyzes hydrolysis of N-acetamido groups in polymers containing N-acetyl-D-glucosamine monomers. ClCDA requires Co2+ for its catalytical activity.

ClCDA gene consists of two exons and encodes 248 amino acids including extracellular localization signal peptide. Coding sequence excluding signal peptide was cloned into pMAL-p5x-CL-StrepII vector containing MBP (maltose binding protein) sequence in N-terminal and Strep-tag II in C-terminal.