Difference between revisions of "Part:BBa K4719004"

Line 7: Line 7:
 
<br>
 
<br>
 
<br>
 
<br>
Bacterial cellulose-chitin polymer was achieved by increasing the production of UDP-N-acetylglucosamine (UDP-GlcNAc), which can be recognized as a viable substrate for cellulose synthase and incorporated in bacterial cellulose polymer. We employed two strategies to produce this material. The first approach was to add N-acetylglucosamine into the growth medium [https://parts.igem.org/Part:BBa_K4719013 BBa_K4719013], and the second one was the production of N-acetylglucosamine by ''K. xylinus'' from simple sugars such as glucose, fructose, and saccharose in the growth medium [https://parts.igem.org/Part:BBa_K4719014 BBa_K4719014].  
+
Bacterial cellulose-chitin polymer was achieved by increasing the production of UDP-N-acetylglucosamine (UDP-GlcNAc), which can be recognized as a viable substrate for cellulose synthase and incorporated in bacterial cellulose polymer. We employed two strategies to produce this material. The first approach was to add N-acetylglucosamine into the growth medium [https://parts.igem.org/Part:BBa_K4719013 BBa_K4719013], and the second one was the production of N-acetylglucosamine by ''K. xylinus'' from other sugars such as glucose, fructose, and saccharose in the growth medium [https://parts.igem.org/Part:BBa_K4719014 BBa_K4719014].  
  
  
Line 13: Line 13:
 
===Usage and Biology===
 
===Usage and Biology===
  
''GFA1'' is glutamine-fructose-6-phosphate aminotransferase. This enzyme catalyzes the formation of glucosamine-6-phosphate and glutamate from fructose-6-phosphate and glutamine. This is a crucial step in our system, that produces bacterial cellulose-chitin polymer from simple sugars in the growth medium. ''GFA1'' is used as a part in [https://parts.igem.org/Part:BBa_K4719014 BBa_K4719014].
+
''GFA1'' is glutamine-fructose-6-phosphate aminotransferase. The protein sequence is from ''Candida albicans''. This enzyme catalyzes the formation of glucosamine-6-phosphate and glutamate from fructose-6-phosphate and glutamine [https://parts.igem.org/Part:BBa_K4719004#References (1)]. This is a crucial step in our system, that produces bacterial cellulose-chitin polymer from simple sugars in the growth medium. ''GFA1'' is used as a part in [https://parts.igem.org/Part:BBa_K4719014 BBa_K4719014].
 +
 
  
<!--
 
https://www.sciencedirect.com/science/article/pii/S0021925819605211
 
  
 
<!-- -->
 
<!-- -->
Line 27: Line 26:
 
<partinfo>BBa_K4719004 parameters</partinfo>
 
<partinfo>BBa_K4719004 parameters</partinfo>
 
<!-- -->
 
<!-- -->
 +
===References===
 +
1.Dummitt, B., Micka, W.S. and Chang, Y.-H. (2005) ‘Yeast Glutamine-fructose-6-phosphate Aminotransferase (Gfa1) Requires Methionine Aminopeptidase Activity for Proper Function’, Journal of Biological Chemistry, 280(14), pp. 14356–14360. doi:10.1074/jbc.m501059200.

Revision as of 16:16, 19 September 2023


GFA1

Introduction

Vilnius Lithuania iGEM 2023 team's goal was to create a universal synthetic biology system in Komagataeibacter xylinus for in vivo bacterial cellulose polymer composition modification. Firstly, we chose to produce a cellulose-chitin polymer that would later be deacetylated, creating bacterial cellulose-chitosan. This polymer is an easily modifiable platform when compared to bacterial cellulose. The enhanced chemical reactivity of bacterial cellulose-chitosan polymer allows for specific functionalizations in the biomedicine field, such as scaffold design.

Bacterial cellulose-chitin polymer was achieved by increasing the production of UDP-N-acetylglucosamine (UDP-GlcNAc), which can be recognized as a viable substrate for cellulose synthase and incorporated in bacterial cellulose polymer. We employed two strategies to produce this material. The first approach was to add N-acetylglucosamine into the growth medium BBa_K4719013, and the second one was the production of N-acetylglucosamine by K. xylinus from other sugars such as glucose, fructose, and saccharose in the growth medium BBa_K4719014.


Usage and Biology

GFA1 is glutamine-fructose-6-phosphate aminotransferase. The protein sequence is from Candida albicans. This enzyme catalyzes the formation of glucosamine-6-phosphate and glutamate from fructose-6-phosphate and glutamine (1). This is a crucial step in our system, that produces bacterial cellulose-chitin polymer from simple sugars in the growth medium. GFA1 is used as a part in BBa_K4719014.


Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal EcoRI site found at 361
    Illegal EcoRI site found at 859
    Illegal XbaI site found at 1459
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal EcoRI site found at 361
    Illegal EcoRI site found at 859
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal EcoRI site found at 361
    Illegal EcoRI site found at 859
    Illegal BglII site found at 1318
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal EcoRI site found at 361
    Illegal EcoRI site found at 859
    Illegal XbaI site found at 1459
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal EcoRI site found at 361
    Illegal EcoRI site found at 859
    Illegal XbaI site found at 1459
  • 1000
    COMPATIBLE WITH RFC[1000]


References

1.Dummitt, B., Micka, W.S. and Chang, Y.-H. (2005) ‘Yeast Glutamine-fructose-6-phosphate Aminotransferase (Gfa1) Requires Methionine Aminopeptidase Activity for Proper Function’, Journal of Biological Chemistry, 280(14), pp. 14356–14360. doi:10.1074/jbc.m501059200.