Difference between revisions of "Part:BBa K4607009"

(Biology and usage)
 
(13 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
<partinfo>BBa_K4607009 short</partinfo>
 
<partinfo>BBa_K4607009 short</partinfo>
  
<center>imagen</center>
 
<center><b>Figure 1.</b> CecA peptide diagram.</center>
 
  
 
===Description===
 
===Description===
 
<p align="justify">
 
<p align="justify">
The biobrick consists of the albumin binding domain (ABD) from streptococcal protein G and is capable of increasing the lifetimes of antibodies, proteins, and enzymes. For this to be possible, the ABD binds with high affinity to serum albumin, creating a large hydrodynamic volume complex that reduces its degradation. This part consists of an affinity-maturated variant of the streptococcal protein G, which has been used for LysK expression with results of up to 34 hours in increasing the lifetime of the protein in mice [1]. The domain has a length of 29 amino acids and a molecular weight of 3.2388 kDa.
+
This biobrick consists of cecropin A (CecA), which was selected for its ability as an antimicrobial peptide. CecA has demonstrated excellent capacity for improving the endolysins antibacterial activity against gram-negative bacteria when it's incorporated in the N-terminal region. The principle behind CecA's antibacterial potential resides in its composition, which includes a cationic region that facilitates lipid interactions, favors a stronger ionic interaction, and finally degrades the cell wall by damaging bacterial inner membranes. CecA peptide has been evaluated in gram-negative bacteria as <i>Escherichia coli</i>. This part has a lenght of 41 amino acids [1].
 +
 
 +
<center>https://static.igem.wiki/teams/4607/wiki/parts/new-parts-e-coli/parts/200-pxceca-biorender-1.jpg</center>
 +
<center><b>Figure 1.</b> CecA peptide diagram.</center>
  
 
===<span class='h3bb'><b>Sequence and Features</b></span>===
 
===<span class='h3bb'><b>Sequence and Features</b></span>===
Line 20: Line 21:
 
The principle behind our proposal is the use of fused proteins based on efficient bacteriophage endolysins. The function of a bacteriophage is to infect bacteria in order to kill them. Once the bacteria are infected and the virions are mature, they release holins, which are enzymes that create pores in the inner cell membrane. Endolysins now have access to the cell wall, so they can degrade it. Endolysins have lytic activity for the purpose of setting free the phage progeny to continue infecting other cells [3]. Endolysins are composed of two main domains: the N-terminal, which represents the catalytic domain, and the C-terminal, which is a cell wall binding domain, which interacts by binding itself to the bacterium's cell wall, activating the catalytic region, and causing cell wall lysis. However, the average endolysin lifetime is 20 minutes [4] [3].
 
The principle behind our proposal is the use of fused proteins based on efficient bacteriophage endolysins. The function of a bacteriophage is to infect bacteria in order to kill them. Once the bacteria are infected and the virions are mature, they release holins, which are enzymes that create pores in the inner cell membrane. Endolysins now have access to the cell wall, so they can degrade it. Endolysins have lytic activity for the purpose of setting free the phage progeny to continue infecting other cells [3]. Endolysins are composed of two main domains: the N-terminal, which represents the catalytic domain, and the C-terminal, which is a cell wall binding domain, which interacts by binding itself to the bacterium's cell wall, activating the catalytic region, and causing cell wall lysis. However, the average endolysin lifetime is 20 minutes [4] [3].
  
 
+
Endolysins need to interact with the peptidoglycan layer to identify and lyse the bacterial cell wall, however, gram-negative bacterial structure makes the process more complicated. To overcome our drawbacks, we incorporated the CecA as a potential solution. The addition of CecA to the N-terminal of a fusion protein improves its antibacterial activity against gram-negative bacteria; this is possible because of its cationic regions, which facilitate the interaction with gram-negative bacterial lipids. Consequently, the amphipathic helix interacts with the lipid phosphate groups of the outer membrane, at the same time, the amphipathic helix may induce the endolysin's introduction through the membrane. Finally, the fusion protein is capable of degrading the inner membranes of the gram-negative bacteria. CecA has been evaluated in gram-negative bacteria as <i>E. coli</i> successfully [1][5][6][7].
 
+
 
+
Tomar como ejemplo:
+
The main purpose of the albumin binding domain (ABD) is to counteract the problems related to the brief in vivo time life of the endolysins. These domains have the capacity to increase the lifetime of antibodies, proteins, and enzymes through the incorporation of their sequences into the fusion protein. For this to be possible, the ABD binds with high affinity to serum albumin, creating a large hydrodynamic volume complex that reduces its degradation. This part consists of an affinity-maturated variant of the streptococcal protein G which has been used  for LysK expression, with results of up to 34 hours in increasing the lifetime of the protein in mice [1]. The best results have been achieved with the following conformation: CHAP domain-ABD-SH3 domain [5]. The domain has a length of 29 amino acids and a molecular weight of 3.2388 kDa. It keeps its stability in a range of 4 to 37 °C and a pH of 7 to 9. The average ABD-endolysin lifetime is about 30 hours [1].
+
  
 
===References===
 
===References===
  
[1] Seijsing, J., Sobieraj, A. M., Keller, N., Shen, Y., Zinkernagel, A. S., Loessner, M. J., & Schmelcher, M. (2018). Improved Biodistribution and Extended Serum Half-Life of a Bacteriophage Endolysin by Albumin Binding Domain Fusion. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02927
+
[1] Jeong, T.-H., Hong, H.-W., Kim, M. S., Song, M., & Myung, H. (2023). Characterization of Three Different Endolysins Effective against Gram-Negative Bacteria. Viruses, 15(3), 679. https://doi.org/10.3390/v15030679
 +
  
 
[2] World Health Organization. (2021, November 17). Antimicrobial resistance. Who.int; World Health Organization: WHO. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
 
[2] World Health Organization. (2021, November 17). Antimicrobial resistance. Who.int; World Health Organization: WHO. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
Line 38: Line 36:
 
[5] Schmelcher, M., Powell, A. M., Becker, S. C., Camp, M. J., & Donovan, D. M. (2012). Chimeric Phage Lysins Act Synergistically with Lysostaphin To Kill Mastitis-Causing Staphylococcus aureus in Murine Mammary Glands. Applied and Environmental Microbiology, 78(7), 2297–2305. https://doi.org/10.1128/aem.07050-11
 
[5] Schmelcher, M., Powell, A. M., Becker, S. C., Camp, M. J., & Donovan, D. M. (2012). Chimeric Phage Lysins Act Synergistically with Lysostaphin To Kill Mastitis-Causing Staphylococcus aureus in Murine Mammary Glands. Applied and Environmental Microbiology, 78(7), 2297–2305. https://doi.org/10.1128/aem.07050-11
  
 +
[6] Heselpoth, R. D., Euler, C. W., Schuch, R., & Fischetti, V. A. (2019). Lysocins: Bioengineered Antimicrobials That Deliver Lysins across the Outer Membrane of Gram-Negative Bacteria. Antimicrobial Agents and Chemotherapy, 63(6). https://doi.org/10.1128/aac.00342-19
 +
 +
 +
[7] Kim, S., Patel, D. S., Park, S., Slusky, J., Klauda, J. B., Widmalm, G., & Im, W. (2016). Bilayer Properties of Lipid A from Various Gram-Negative Bacteria. Biophysical Journal, 111(8), 1750–1760. https://doi.org/10.1016/j.bpj.2016.09.001
 +
 +
  
 
<!-- Uncomment this to enable Functional Parameter display  
 
<!-- Uncomment this to enable Functional Parameter display  

Latest revision as of 22:06, 9 September 2023


CecA


Description

This biobrick consists of cecropin A (CecA), which was selected for its ability as an antimicrobial peptide. CecA has demonstrated excellent capacity for improving the endolysins antibacterial activity against gram-negative bacteria when it's incorporated in the N-terminal region. The principle behind CecA's antibacterial potential resides in its composition, which includes a cationic region that facilitates lipid interactions, favors a stronger ionic interaction, and finally degrades the cell wall by damaging bacterial inner membranes. CecA peptide has been evaluated in gram-negative bacteria as Escherichia coli. This part has a lenght of 41 amino acids [1].

200-pxceca-biorender-1.jpg
Figure 1. CecA peptide diagram.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

Biology and usage

As a brief contextualization, bovine mastitis is the result of the infection of the bovine mammary glands caused by pathogenic microorganisms, mainly gram-positive and negative bacteria. This disease reduces milk quality production to a great extent and produces painful damage to the bovine. The main treatment for mastitis is the use of diverse antibiotics, therefore the overuse and misuse of them have caused a real problem in the development of multidrug-resistant pathogens [2]. Our team has conducted an extensive investigation to find an alternative treatment for bovine mastitis without risking the environment.

The principle behind our proposal is the use of fused proteins based on efficient bacteriophage endolysins. The function of a bacteriophage is to infect bacteria in order to kill them. Once the bacteria are infected and the virions are mature, they release holins, which are enzymes that create pores in the inner cell membrane. Endolysins now have access to the cell wall, so they can degrade it. Endolysins have lytic activity for the purpose of setting free the phage progeny to continue infecting other cells [3]. Endolysins are composed of two main domains: the N-terminal, which represents the catalytic domain, and the C-terminal, which is a cell wall binding domain, which interacts by binding itself to the bacterium's cell wall, activating the catalytic region, and causing cell wall lysis. However, the average endolysin lifetime is 20 minutes [4] [3].

Endolysins need to interact with the peptidoglycan layer to identify and lyse the bacterial cell wall, however, gram-negative bacterial structure makes the process more complicated. To overcome our drawbacks, we incorporated the CecA as a potential solution. The addition of CecA to the N-terminal of a fusion protein improves its antibacterial activity against gram-negative bacteria; this is possible because of its cationic regions, which facilitate the interaction with gram-negative bacterial lipids. Consequently, the amphipathic helix interacts with the lipid phosphate groups of the outer membrane, at the same time, the amphipathic helix may induce the endolysin's introduction through the membrane. Finally, the fusion protein is capable of degrading the inner membranes of the gram-negative bacteria. CecA has been evaluated in gram-negative bacteria as E. coli successfully [1][5][6][7].

References

[1] Jeong, T.-H., Hong, H.-W., Kim, M. S., Song, M., & Myung, H. (2023). Characterization of Three Different Endolysins Effective against Gram-Negative Bacteria. Viruses, 15(3), 679. https://doi.org/10.3390/v15030679

[2] World Health Organization. (2021, November 17). Antimicrobial resistance. Who.int; World Health Organization: WHO. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance

[3] Gutiérrez, D., Fernández, L., Rodríguez, A., & García, P. (2018). Are phage lytic proteins the secret weapon to kill Staphylococcus aureus?. MBio, 9(1), 10-1128. https://doi.org/10.1128/mbio.01923-17

[4] Fernández, L., González, S., Campelo, A. B., Martínez, B., Rodríguez, A., & García, P. (2017). Downregulation of Autolysin-Encoding Genes by Phage-Derived Lytic Proteins Inhibits Biofilm Formation in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 61(5), e02724-16. https://doi.org/10.1128/AAC.02724-16

[5] Schmelcher, M., Powell, A. M., Becker, S. C., Camp, M. J., & Donovan, D. M. (2012). Chimeric Phage Lysins Act Synergistically with Lysostaphin To Kill Mastitis-Causing Staphylococcus aureus in Murine Mammary Glands. Applied and Environmental Microbiology, 78(7), 2297–2305. https://doi.org/10.1128/aem.07050-11

[6] Heselpoth, R. D., Euler, C. W., Schuch, R., & Fischetti, V. A. (2019). Lysocins: Bioengineered Antimicrobials That Deliver Lysins across the Outer Membrane of Gram-Negative Bacteria. Antimicrobial Agents and Chemotherapy, 63(6). https://doi.org/10.1128/aac.00342-19

[7] Kim, S., Patel, D. S., Park, S., Slusky, J., Klauda, J. B., Widmalm, G., & Im, W. (2016). Bilayer Properties of Lipid A from Various Gram-Negative Bacteria. Biophysical Journal, 111(8), 1750–1760. https://doi.org/10.1016/j.bpj.2016.09.001