Difference between revisions of "Part:BBa K4288010"

 
 
(6 intermediate revisions by 3 users not shown)
Line 4: Line 4:
  
 
ArsA-GFP
 
ArsA-GFP
 +
== Profile ==
 +
Name: pro-ArsA amilGFP
 +
 +
Base Pairs: 2564 bp
 +
 +
Origin: Escherichia coli
 +
 +
Properties: Gene technology for protecting patented bacterial strains
 +
== Usage and Biology ==
 +
ArsA was designed to response to the various concentration of arsenic, and fused amilGFP to monitor the arsenic concentration.
 +
== BBa_K3991000 ==
 +
Name: ArsA
 +
 +
Base Pairs: 1749 bp
 +
 +
Origin: Escherichia coli
 +
 +
Properties: arsenic metallochaperone
 +
== Usage and Biology ==
 +
The ArsA protein is an arsenite-stimulated ATPase and complexed with ArsB protein. Its function is to transport the arsenic.
 +
 +
Bacteria developed a mechanism against the arsenic pervasiveness. Many bacteria processed three genes, arsRBC. Five gene ars operons have two additional genes, arsD and arsA, called arsRDABC. ArsR is an As(III)-responsive transcriptional repressor, additional genes ArsD and arsA derived from E.coli. The arsRDABC operon are more resistant to As due to the ArsA-ArsB complex that catalyzes ATP-driven As/Sb efflux.
 +
 +
== Construct design ==
 +
In order to develop a real-time tool for detecting the arsenic binding, promotor ArsA was designed to response to the various concentration of arsenic, fused to amilGFP to monitor the arsenic concentration. This DNA fragment was inserted into the expression vector pET28a.
 +
== Experimental approach ==
 +
[[File:T--Fujian united--BBa K3991008-figure 1.jpg|500px|thumb|center|Figure 1. GFP intensity in different concentration of As.]]
 +
The result demonstrated the relationship between the florescence intensity and the arsenic concentration ranging from 10ug/L to 200ug/L. Compared to cultivation time of 1h or 0h, the green curve of cultivation time of 2h showed the significant increasing GFP intensity. however, the higher concentration of arsenic (100ug/L) might inhibit the bacteria growth, so the GFP intensity decreased. According the result, 50ug/L induced the maximum florescence expression under ArsA promoter.
 +
 +
Reference
 +
 +
1. Silver, S. and L.T. Phung, BACTERIAL HEAVY METAL RESISTANCE: New Surprises.[J] Annual Review of Microbiology, 1996. 50(1):753-789.
 +
 +
2. Lin, Y.-F., J. Yang, and B.P. Rosen, ArsD: an As(III) metallochaperone for the ArsAB As(III)-translocating ATPase.[J] Journal of Bioenergetics and Biomembranes, 2007. 39(5):453-458.
  
<!-- Add more about the biology of this part here
 
===Usage and Biology===
 
  
<!-- -->
 
<span class='h3bb'>Sequence and Features</span>
 
<partinfo>BBa_K4288010 SequenceAndFeatures</partinfo>
 
  
  

Latest revision as of 14:21, 12 October 2022


ArsA-GFP

ArsA-GFP

Profile

Name: pro-ArsA amilGFP

Base Pairs: 2564 bp

Origin: Escherichia coli

Properties: Gene technology for protecting patented bacterial strains

Usage and Biology

ArsA was designed to response to the various concentration of arsenic, and fused amilGFP to monitor the arsenic concentration.

BBa_K3991000

Name: ArsA

Base Pairs: 1749 bp

Origin: Escherichia coli

Properties: arsenic metallochaperone

Usage and Biology

The ArsA protein is an arsenite-stimulated ATPase and complexed with ArsB protein. Its function is to transport the arsenic.

Bacteria developed a mechanism against the arsenic pervasiveness. Many bacteria processed three genes, arsRBC. Five gene ars operons have two additional genes, arsD and arsA, called arsRDABC. ArsR is an As(III)-responsive transcriptional repressor, additional genes ArsD and arsA derived from E.coli. The arsRDABC operon are more resistant to As due to the ArsA-ArsB complex that catalyzes ATP-driven As/Sb efflux.

Construct design

In order to develop a real-time tool for detecting the arsenic binding, promotor ArsA was designed to response to the various concentration of arsenic, fused to amilGFP to monitor the arsenic concentration. This DNA fragment was inserted into the expression vector pET28a.

Experimental approach

Figure 1. GFP intensity in different concentration of As.

The result demonstrated the relationship between the florescence intensity and the arsenic concentration ranging from 10ug/L to 200ug/L. Compared to cultivation time of 1h or 0h, the green curve of cultivation time of 2h showed the significant increasing GFP intensity. however, the higher concentration of arsenic (100ug/L) might inhibit the bacteria growth, so the GFP intensity decreased. According the result, 50ug/L induced the maximum florescence expression under ArsA promoter.

Reference

1. Silver, S. and L.T. Phung, BACTERIAL HEAVY METAL RESISTANCE: New Surprises.[J] Annual Review of Microbiology, 1996. 50(1):753-789.

2. Lin, Y.-F., J. Yang, and B.P. Rosen, ArsD: an As(III) metallochaperone for the ArsAB As(III)-translocating ATPase.[J] Journal of Bioenergetics and Biomembranes, 2007. 39(5):453-458.