Difference between revisions of "Part:BBa K4165082"
Ahmedsameh (Talk | contribs) |
(→Dry-Lab Charachtarization) |
||
(6 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
<partinfo>BBa_K4165082 short</partinfo> | <partinfo>BBa_K4165082 short</partinfo> | ||
− | + | This basic part encodes Human serine protease inhibitor known as SPINK9 which is able to inhibit trypsin-like proteases, like HtrA1 (BBa_K4165004). | |
+ | |||
===Usage and Biology=== | ===Usage and Biology=== | ||
− | This | + | This part encodes for a type of inhibitor that is able to inhibit serine proteases and it is predicted to be located extracellularly. The main function of the inhibitor is to specifically target kallikrein-related peptide 5 (KLK-5) which is an important initiator of skin peeling. The inhibitor binds to trypsin proteases and since the catalytic core of HtrA1 (BBa_K4165004) is considered as a trypsin-like catalytic domain, so this inhibitor also is considered to inhibit the function of HtrA1 [1] - [4]. |
+ | |||
<!-- --> | <!-- --> | ||
− | <span class='h3bb'>Sequence and Features</span> | + | ===<span class='h3bb'>Sequence and Features</span>=== |
<partinfo>BBa_K4165082 SequenceAndFeatures</partinfo> | <partinfo>BBa_K4165082 SequenceAndFeatures</partinfo> | ||
+ | ===Dry-Lab Charachtarization=== | ||
− | = | + | <p style=" font-weight: bold; font-size:14px;"> Modelling </p> |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | |||
+ | <html> | ||
+ | <p><img src="https://static.igem.wiki/teams/4165/wiki/parts-registry/switches/1-alphafold.png" style="margin-left:200px;" alt="" width="500" /></p> | ||
+ | </html> | ||
− | + | Figure 1.: A graphical illustration showing the domains of TRIM21. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
===References=== | ===References=== | ||
− | 1 - Frochaux, V., Hildebrand, D., Talke, A., Linscheid, M. W., & Schlüter, H. (2014). Alpha-1-antitrypsin: a novel human high temperature requirement protease A1 (HTRA1) substrate in human placental tissue. PloS one, 9(10), e109483. | + | 1 - Frochaux, V., Hildebrand, D., Talke, A., Linscheid, M. W., & Schlüter, H. (2014). Alpha-1-antitrypsin: a novel human high temperature requirement protease A1 (HTRA1) substrate in human placental tissue. PloS one, 9(10), e109483. <br> |
− | 2 - Grau, S., Baldi, A., Bussani, R., Tian, X., Stefanescu, R., Przybylski, M., ... & Ehrmann, M. (2005). Implications of the serine protease HtrA1 in amyloid precursor protein processing. Proceedings of the National Academy of Sciences, 102(17), 6021-6026. | + | 2 - Grau, S., Baldi, A., Bussani, R., Tian, X., Stefanescu, R., Przybylski, M., ... & Ehrmann, M. (2005). Implications of the serine protease HtrA1 in amyloid precursor protein processing. Proceedings of the National Academy of Sciences, 102(17), 6021-6026.<br> |
− | 3 - Eigenbrot, C., Ultsch, M., Lipari, M. T., Moran, P., Lin, S. J., Ganesan, R., ... & Kirchhofer, D. (2012). Structural and functional analysis of HtrA1 and its subdomains. Structure, 20(6), 1040-1050. | + | 3 - Eigenbrot, C., Ultsch, M., Lipari, M. T., Moran, P., Lin, S. J., Ganesan, R., ... & Kirchhofer, D. (2012). Structural and functional analysis of HtrA1 and its subdomains. Structure, 20(6), 1040-1050.<br> |
4 - Chen, T. J., Tian, Y. F., Chou, C. L., Chan, T. C., He, H. L., Li, W. S., ... & Lai, H. Y. (2021). High spink4 expression predicts poor outcomes among rectal cancer patients receiving CCRT. Current Oncology, 28(4), 2373-2384. | 4 - Chen, T. J., Tian, Y. F., Chou, C. L., Chan, T. C., He, H. L., Li, W. S., ... & Lai, H. Y. (2021). High spink4 expression predicts poor outcomes among rectal cancer patients receiving CCRT. Current Oncology, 28(4), 2373-2384. | ||
<partinfo>BBa_K4165082 parameters</partinfo> | <partinfo>BBa_K4165082 parameters</partinfo> | ||
<!-- --> | <!-- --> |
Latest revision as of 05:25, 12 October 2022
SPINK9 (Serine Peptidase Inhibitor Kazal type 9).
This basic part encodes Human serine protease inhibitor known as SPINK9 which is able to inhibit trypsin-like proteases, like HtrA1 (BBa_K4165004).
Usage and Biology
This part encodes for a type of inhibitor that is able to inhibit serine proteases and it is predicted to be located extracellularly. The main function of the inhibitor is to specifically target kallikrein-related peptide 5 (KLK-5) which is an important initiator of skin peeling. The inhibitor binds to trypsin proteases and since the catalytic core of HtrA1 (BBa_K4165004) is considered as a trypsin-like catalytic domain, so this inhibitor also is considered to inhibit the function of HtrA1 [1] - [4].
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Dry-Lab Charachtarization
Modelling
Figure 1.: A graphical illustration showing the domains of TRIM21.
References
1 - Frochaux, V., Hildebrand, D., Talke, A., Linscheid, M. W., & Schlüter, H. (2014). Alpha-1-antitrypsin: a novel human high temperature requirement protease A1 (HTRA1) substrate in human placental tissue. PloS one, 9(10), e109483.
2 - Grau, S., Baldi, A., Bussani, R., Tian, X., Stefanescu, R., Przybylski, M., ... & Ehrmann, M. (2005). Implications of the serine protease HtrA1 in amyloid precursor protein processing. Proceedings of the National Academy of Sciences, 102(17), 6021-6026.
3 - Eigenbrot, C., Ultsch, M., Lipari, M. T., Moran, P., Lin, S. J., Ganesan, R., ... & Kirchhofer, D. (2012). Structural and functional analysis of HtrA1 and its subdomains. Structure, 20(6), 1040-1050.
4 - Chen, T. J., Tian, Y. F., Chou, C. L., Chan, T. C., He, H. L., Li, W. S., ... & Lai, H. Y. (2021). High spink4 expression predicts poor outcomes among rectal cancer patients receiving CCRT. Current Oncology, 28(4), 2373-2384.