Difference between revisions of "Part:BBa K4414026"

 
(17 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
<partinfo>BBa_K4414026 short</partinfo>
 
<partinfo>BBa_K4414026 short</partinfo>
  
This composite part consists of an N-terminal NR3C1 LBD(BBa_K4414000) domain and a C-terminal tetR(BBa_K4414009) domain fused with a GGGGGSG linker. It is designed to sense glucocorticoids and activates the transcription of the reporter gene.
+
This composite part consists of an N-terminal GR LBD([[Part:BBa_K4414000]]) domain and a C-terminal tetR([[Part:BBa_K4414009]]) domain fused with a GGGGGSG linker. It is designed to sense glucocorticoids and activates the transcription of the reporter gene.
  
  
 
==Usage and Biology==
 
==Usage and Biology==
  
As a glucocorticoid sensor, this part is designed to enter the nucleus upon glucocorticoid stimulation and bind to the TCE promoter to activate downstream transcription. This part consists of a tetR DNA binding domain, which binds to the TCE promoter (BBa_K4016011) consisting of seven direct 19-bp tet operator sequence (tetO) repeats. The NR3C1 LBD domain on the N terminal is the ligand�binding domain of the glucocorticoid receptor(GR). This LBD domain can translocate the fusion protein into the nucleus upon glucocorticoid stimulation. It also has a transactivating domain 2 (τ2) and an activation function domain 2 (AF2) which activates downstream gene expression.[1]
+
As a glucocorticoid sensor, this part is designed to enter the nucleus upon glucocorticoid stimulation and bind to the TCE promoter to activate downstream transcription. This part consists of a tetR DNA binding domain, which binds to the TCE promoter ([[Part:BBa_K4016011]]) consisting of seven direct 19-bp tet operator sequence (tetO) repeats. The GR LBD domain on the N terminal is the ligand binding domain of the glucocorticoid receptor(GR). This LBD domain can translocate the fusion protein into the nucleus upon glucocorticoid stimulation. It also has a transactivating domain 2 (τ2) and an activation function domain 2 (AF2) which activates downstream gene expression(Weikum et al., 2017).
  
 
<html>
 
<html>
  
 
<figure class="figure">
 
<figure class="figure">
<img src="https://static.igem.org/mediawiki/parts/1/17/T--NUDT_CHINA--Part_PixD-PixE_Schematic.png" class="figure-img img-fluid rounded"  height="250px">
+
<img src="https://static.igem.wiki/teams/4414/wiki/26-1-1.png" class="figure-img img-fluid rounded"  height="350px">
  
 
</figure>
 
</figure>
  
 
</html>
 
</html>
Figure1. Schematic figure of BBa_K4414026 and BBa_K4414041
+
Figure1. Schematic figure of BBa_K4414026 and ([[Part:BBa_K4414041]])
 
+
<span class='h3bb'>Sequence and Features</span>
+
<partinfo>K4414026 SequenceAndFeatures</partinfo>
+
  
 +
<!-- -->
 +
===Sequence and Features===
 +
<partinfo>BBa_K4414026 SequenceAndFeatures</partinfo>
  
 
<!-- Uncomment this to enable Functional Parameter display  
 
<!-- Uncomment this to enable Functional Parameter display  
Line 29: Line 29:
 
<!-- -->
 
<!-- -->
  
 
+
==Functional Test==
 +
To test the ability of this part to respond to glucocorticoids, HEK-293T cells were co-transfected with plasmids encoding both BBa_K4414026 and TCE-SEAP([[Part:BBa_K4414041]]).
 
===Method===
 
===Method===
 
<html>
 
<html>
 +
 +
Cells were treated with 10, 50, or 100 nM Glucocorticoids 6 h post-transfection. Cells without glucocorticoid treatment were used as control. Culture medium was collected at 24 h or 48 h post glucocorticoids treatment. SEAP activity was measured according to a published protocol(Shao, Qiu, & Xie, 2021).
 +
  
 
<figure class="figure">
 
<figure class="figure">
<img src="https://static.igem.org/mediawiki/parts/6/65/T--NUDT_CHINA--Part_Validation_SEAP_PixE-PixD.png
+
<img src="https://static.igem.wiki/teams/4414/wiki/26-2-1.png
 +
 
 +
 
 
" class="figure-img img-fluid rounded"  height="350px">
 
" class="figure-img img-fluid rounded"  height="350px">
  
Line 40: Line 46:
  
 
</html>
 
</html>
 
+
Figure2.Schematic representation of the experimental process of validation for BBa_K4414026 and ([[Part:BBa_K4414041]]).
HEK-293T cells were co-transfected with plasmids encoding both BBa_K4414026 and TCE-SEAP(BBa_K4414041). Cells were treated with 10, 50, or 100 nM Glucocorticoids 6 h post-transfection. Cells without glucocorticoid treatment were used as control. Culture medium was collected at 24 h or 48 h post glucocorticoids treatment. SEAP activity was measured according to a published protocol. [2]
+
 
+
  
 
===Result===
 
===Result===
 
<html>
 
<html>
 +
Results showed significantly increased SEAP expression in glucocorticoid-treated cells compared to the non-treated control (2-20 folds). A dose dependence was observed within 0-100 nM of glucocorticoid (Figure 3).
  
 
<figure class="figure">
 
<figure class="figure">
<img src="https://2021.igem.org/wiki/images/d/d6/T--NUDT_CHINA--Part_Result_00-01_.png
+
<img src="https://static.igem.wiki/teams/4414/wiki/26-3.png
 
" class="figure-img img-fluid rounded"  height="350px">
 
" class="figure-img img-fluid rounded"  height="350px">
  
Line 54: Line 59:
  
 
</html>
 
</html>
Figure 2 Result of SEAP test. The SEAP activity was calculated at 24h and 48h after transfection.
+
Figure3. Glucocorticoid-stimulated transcriptional activation of SEAP mediated by BBa_K4414026.
 
+
The cells showed a nearly 40% decrease in SEAP activity after 24h blue light exposure, compared with the group exposed to dark. And after 48h, the SEAP activity in blue light group was reduce to 0. This can validate PixD and PixE’s interaction.
+
 
+
 
+
  
  
===Reference===
+
==Reference==
[1] Dine E, Gil AA, Uribe G, Brangwynne CP, Toettcher JE. Protein Phase Separation Provides Long-Term Memory of Transient Spatial Stimuli. Cell Syst. 2018 Jun 27;6(6):655-663.e5. doi: 10.1016/j.cels.2018.05.002. Epub 2018 May 30. PMID: 29859829; PMCID: PMC6023
+
1. Weikum, E. R., Knuesel, M. T., Ortlund, E. A., & Yamamoto, K. R. (2017). Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol, 18(3), 159-174. doi:10.1038/nrm.2016.152
  
[2] Yuan H, Bauer CE. PixE promotes dark oligomerization of the BLUF photoreceptor PixD. Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11715-9. doi: 10.1073/pnas.0802149105. Epub 2008 Aug 11. PMID: 18695243; PMCID: PMC2575306.
+
2. Shao, J., Qiu, X., & Xie, M. (2021). Engineering Mammalian Cells to Control Glucose Homeostasis. Methods Mol Biol, 2312, 35-57. doi:10.1007/978-1-0716-1441-9_3

Latest revision as of 17:50, 11 October 2022


LBD-GGGGGSG-tetR

This composite part consists of an N-terminal GR LBD(Part:BBa_K4414000) domain and a C-terminal tetR(Part:BBa_K4414009) domain fused with a GGGGGSG linker. It is designed to sense glucocorticoids and activates the transcription of the reporter gene.


Usage and Biology

As a glucocorticoid sensor, this part is designed to enter the nucleus upon glucocorticoid stimulation and bind to the TCE promoter to activate downstream transcription. This part consists of a tetR DNA binding domain, which binds to the TCE promoter (Part:BBa_K4016011) consisting of seven direct 19-bp tet operator sequence (tetO) repeats. The GR LBD domain on the N terminal is the ligand binding domain of the glucocorticoid receptor(GR). This LBD domain can translocate the fusion protein into the nucleus upon glucocorticoid stimulation. It also has a transactivating domain 2 (τ2) and an activation function domain 2 (AF2) which activates downstream gene expression(Weikum et al., 2017).

Figure1. Schematic figure of BBa_K4414026 and (Part:BBa_K4414041)

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Functional Test

To test the ability of this part to respond to glucocorticoids, HEK-293T cells were co-transfected with plasmids encoding both BBa_K4414026 and TCE-SEAP(Part:BBa_K4414041).

Method

Cells were treated with 10, 50, or 100 nM Glucocorticoids 6 h post-transfection. Cells without glucocorticoid treatment were used as control. Culture medium was collected at 24 h or 48 h post glucocorticoids treatment. SEAP activity was measured according to a published protocol(Shao, Qiu, & Xie, 2021).

Figure2.Schematic representation of the experimental process of validation for BBa_K4414026 and (Part:BBa_K4414041).

Result

Results showed significantly increased SEAP expression in glucocorticoid-treated cells compared to the non-treated control (2-20 folds). A dose dependence was observed within 0-100 nM of glucocorticoid (Figure 3).

Figure3. Glucocorticoid-stimulated transcriptional activation of SEAP mediated by BBa_K4414026.


Reference

1. Weikum, E. R., Knuesel, M. T., Ortlund, E. A., & Yamamoto, K. R. (2017). Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol, 18(3), 159-174. doi:10.1038/nrm.2016.152

2. Shao, J., Qiu, X., & Xie, M. (2021). Engineering Mammalian Cells to Control Glucose Homeostasis. Methods Mol Biol, 2312, 35-57. doi:10.1007/978-1-0716-1441-9_3