Difference between revisions of "Part:BBa K4129105"

Line 2: Line 2:
 
<partinfo>BBa_K4129105 short</partinfo>
 
<partinfo>BBa_K4129105 short</partinfo>
  
FunsTF16 is a synthetic transcription factor (sTF) based on sensor of benzoic acid derivatives (sBAD), which is a sTF in <i>S. cerevisiae</i> (Castaño-Cerezo et. al (2020)). FunsTF16 deviates from sBAD, because it has an nuclear localization signal (NLS) and is codon optimised to <i>A. niger</i>. FunsTF16 is a fusion protein consisting of the DNA-binding domain LexA, the ligand sensing domain HbaR10, transactivation domain B112 and the nuclear localization signal (NLS) SV40.
+
FunsTF16 is a synthetic transcription factor (sTF) based on sensor of benzoic acid derivatives (sBAD), which is a sTF in <i>S. cerevisiae</i> (Castaño-Cerezo et. al (2020)). FunsTF16 deviates from sBAD, because it has an nuclear localization signal (NLS) and is codon optimised to <i>A. niger</i>. FunsTF16 is a fusion protein consisting of the DNA-binding domain LexA, the ligand sensing domain HbaR10, transactivation domain B112 and the nuclear localization signal (NLS) SV40. In addition, was FunsTF16 condon optimised to <A>. <niger>.
  
 
LexA is a repressor that regulates the SOS response in <i>E. coli</i> (Radman. 1975). LexA binds to a specific DNA motif, namely LexO sites (Erill. et al (2003)), and it is the DNA binding domain interacting with LexO that is used in FunsTF16. HbaR is a transcription factor from <i>Rhodopseudomonas palustris</i> that initiates transcription in the presence of benzoic acid (Egland. et al (2000) or in the presence of benzoic acid derivatives (Castaño-Cerezo et. al (2020)). We created 16 mutants of HbaR and FunsTF16 carried mutant number 10 of HbaR, which had the following mutations: A45S, L64I, A86G, A88Y, Y96A and L97G.
 
LexA is a repressor that regulates the SOS response in <i>E. coli</i> (Radman. 1975). LexA binds to a specific DNA motif, namely LexO sites (Erill. et al (2003)), and it is the DNA binding domain interacting with LexO that is used in FunsTF16. HbaR is a transcription factor from <i>Rhodopseudomonas palustris</i> that initiates transcription in the presence of benzoic acid (Egland. et al (2000) or in the presence of benzoic acid derivatives (Castaño-Cerezo et. al (2020)). We created 16 mutants of HbaR and FunsTF16 carried mutant number 10 of HbaR, which had the following mutations: A45S, L64I, A86G, A88Y, Y96A and L97G.
 +
 
The transactivation domain B112 is from <i>E. coli</i>, which were experimentally proven to initiate transcription of a synthetic promoter in <i>S. cerevisiae</i> (Ottoz et. al (2014)). The NLS SV40 is a small peptide sequence of PKKKRKV that enables transport of the protein to the nucleus (Garcia-Bustos et. al (1991)).
 
The transactivation domain B112 is from <i>E. coli</i>, which were experimentally proven to initiate transcription of a synthetic promoter in <i>S. cerevisiae</i> (Ottoz et. al (2014)). The NLS SV40 is a small peptide sequence of PKKKRKV that enables transport of the protein to the nucleus (Garcia-Bustos et. al (1991)).
  

Revision as of 13:22, 11 October 2022

The synthetic transcription factor, FunsTF16 (LexA-SL-HbaR10-B112-SV40)

FunsTF16 is a synthetic transcription factor (sTF) based on sensor of benzoic acid derivatives (sBAD), which is a sTF in S. cerevisiae (Castaño-Cerezo et. al (2020)). FunsTF16 deviates from sBAD, because it has an nuclear localization signal (NLS) and is codon optimised to A. niger. FunsTF16 is a fusion protein consisting of the DNA-binding domain LexA, the ligand sensing domain HbaR10, transactivation domain B112 and the nuclear localization signal (NLS) SV40. In addition, was FunsTF16 condon optimised to <A>. <niger>.

LexA is a repressor that regulates the SOS response in E. coli (Radman. 1975). LexA binds to a specific DNA motif, namely LexO sites (Erill. et al (2003)), and it is the DNA binding domain interacting with LexO that is used in FunsTF16. HbaR is a transcription factor from Rhodopseudomonas palustris that initiates transcription in the presence of benzoic acid (Egland. et al (2000) or in the presence of benzoic acid derivatives (Castaño-Cerezo et. al (2020)). We created 16 mutants of HbaR and FunsTF16 carried mutant number 10 of HbaR, which had the following mutations: A45S, L64I, A86G, A88Y, Y96A and L97G.

The transactivation domain B112 is from E. coli, which were experimentally proven to initiate transcription of a synthetic promoter in S. cerevisiae (Ottoz et. al (2014)). The NLS SV40 is a small peptide sequence of PKKKRKV that enables transport of the protein to the nucleus (Garcia-Bustos et. al (1991)).

The designed function of FunsTF16 is to be used as a transcription factor that can initiate transcription from the 6xLexO minimal promoter (BBa_K4129115). No functionality was shown.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 622
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 809
    Illegal BamHI site found at 1148
    Illegal XhoI site found at 1297
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 714
  • 1000
    COMPATIBLE WITH RFC[1000]