Difference between revisions of "Part:BBa K4221020"

 
 
(2 intermediate revisions by one other user not shown)
Line 2: Line 2:
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K4221020 short</partinfo>
 
<partinfo>BBa_K4221020 short</partinfo>
 
 
 
 
<!-- Add more about the biology of this part here
 
===Usage and Biology===
 
  
 
<!-- -->
 
<!-- -->
Line 18: Line 12:
 
<partinfo>BBa_K4221020 parameters</partinfo>
 
<partinfo>BBa_K4221020 parameters</partinfo>
 
<!-- -->
 
<!-- -->
 +
 +
===Usage===
 +
In the process of protein purification by ATPs, we can use the amphiphilicity of BslA to change the hydrophilicity of fluorescent protein, so that fluorescent protein can only show fluorescence in the organic phase/aqueous phase, so as to achieve a high-efficiency and low-cost protein purification method.
 +
 +
Our team used the amphiphilicity of BslA to enhance the antibacterial/targeting effect of LL37 antimicrobial peptide and the PET degrading efficiency of degrading enzyme mPETase.
 +
 +
===Biology===
 +
BslA is a structurally defined bacterial hydrophobin that was found in the biofilm of Bacillus subtilis.
 +
 +
It helps the assembling of TasA (an exopolysaccharide and an amyloid fiber-forming protein), the component of the biofilm matrix. BslA is composed of an Ig-type fold with the addition of an unusual, extremely hydrophobic “cap” region. The central hydrophobic residues of the cap are essential to allow a hydrophobic, nonwetting biofilm to form as they control the surface activity of the BslA protein.[1]
 +
 +
===Design Consideration===
 +
The construction includes:
 +
BslA with a TEV linker(GAAAACCTGTACTTCCAGGGTTCTGGT)
 +
 +
===Reference===
 +
[1]: “BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm.” Proceedings of the National Academy of Sciences of the United States of America vol. 110,33 (2013): 13600-5. doi:10.1073/pnas.1306390110
 +
 +
 +
<!-- Add more about the biology of this part here
 +
===Usage and Biology===

Latest revision as of 06:48, 11 October 2022


TEVlinker-BslA(42-181aa)

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Usage

In the process of protein purification by ATPs, we can use the amphiphilicity of BslA to change the hydrophilicity of fluorescent protein, so that fluorescent protein can only show fluorescence in the organic phase/aqueous phase, so as to achieve a high-efficiency and low-cost protein purification method.

Our team used the amphiphilicity of BslA to enhance the antibacterial/targeting effect of LL37 antimicrobial peptide and the PET degrading efficiency of degrading enzyme mPETase.

Biology

BslA is a structurally defined bacterial hydrophobin that was found in the biofilm of Bacillus subtilis.

It helps the assembling of TasA (an exopolysaccharide and an amyloid fiber-forming protein), the component of the biofilm matrix. BslA is composed of an Ig-type fold with the addition of an unusual, extremely hydrophobic “cap” region. The central hydrophobic residues of the cap are essential to allow a hydrophobic, nonwetting biofilm to form as they control the surface activity of the BslA protein.[1]

Design Consideration

The construction includes: BslA with a TEV linker(GAAAACCTGTACTTCCAGGGTTCTGGT)

Reference

[1]: “BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm.” Proceedings of the National Academy of Sciences of the United States of America vol. 110,33 (2013): 13600-5. doi:10.1073/pnas.1306390110