Difference between revisions of "Part:BBa K4452002"

 
(correct description)
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
 
<partinfo>BBa_K4452002 short</partinfo>
 
<partinfo>BBa_K4452002 short</partinfo>
  
transit peptide for plastids in Arabidopsis
+
<p>This transit peptide was identified for implementing root magnetotropism by overexpressing ferritin in statoliths of columella cells in Arabidopsis thaliana. While no statolith import sequences have been validated, this transit peptide was selected as a candidate sequence for importing ferritin into statoliths. </p>
 +
 
 +
===Background===
 +
<p>To restore directional root growth in microgravity, Hopkins iGEM 2022 proposed that the existing gravitropic mechanisms can be engineered to respond to an artificial cue. We set out to engineer roots to grow in the direction of magnetic field gradients: magnetotropism.</p>
 +
<p>Plants sense gravity via statoliths—starch-laden organelles in root tip columella cells—which sediment due to their weight. Statolith sedimentation triggers changes in the efflux of auxin, a universal plant hormone that induces plant cell elongation. Polarized auxin accumulation along the upper and lower sides of roots causes differential elongation of cells, guiding root growth in the direction of gravity.</p>
 +
<p>We predicted that filling statoliths with iron-loading proteins, like ferritin, would allow the statoliths to move in response to a magnetic gradient. For our project we designed a genetic construct that allows for ferritin to be overexpressed in Arabidopsis and imported into statoliths.</p>
 +
 
 +
===Biology===
 +
 
 +
<p>In addition to overexpressing ferritin in the correct cells, we need to import the ferritin into the correct intracellular compartments, i.e the statoliths.</p>
 +
 
 +
<p>Statoliths are starch-laden organelles in plant cells. The class of organelles in plants that are involved in food synthesis and storage are called plastids. The plastids that are responsible for food synthesis usually contain pigments. Chloroplasts are an example of plastids that are involved in food synthesis and they contain the green pigment chlorophyll.</p>
 +
 
 +
<p>Plastids without pigments are called leucoplasts. Leucoplasts are responsible for food storage and are renamed for the type of food they store. Leucoplasts that store starch are called amyloplasts, and thus, statoliths are a type of amyloplast.</p>
 +
 
 +
<p>Proteins that originate from nuclear transcripts must have a transit peptide (TP) sequence on their N terminus, which will bind to translocons on the plastid membrane after its initial translation. The rest of the protein will then be translated directly into the plastid. No validated statolith import sequences are known, so we selected sequences to test. We searched for papers that mentioned root amyloplast TPs, and searched the Gene Ontology (GO) Resource for proteins known to be in the statolith that had annotated TPs.</p>
 +
 
 +
<i>Candidate: prcpHsc70-1 Transit Peptide</i>
 +
 
 +
<p>Chu et al. found that Arabidopsis (Arabidopsis thaliana) preprotein prcpHsc70-1 imported very well into leucoplasts, with a leucoplast import efficiency of 45%. Additionally, knockout mutants of Arabidopsis cpHsc70-1, one of a family of plastid Hsp70 proteins, have small size and slow root growth. This suggests that cpHsc70-1 may not only be localized to leucoplasts but statoliths in particular. [1]</p>
  
 
<!-- Add more about the biology of this part here
 
<!-- Add more about the biology of this part here
Line 17: Line 36:
 
<partinfo>BBa_K4452002 parameters</partinfo>
 
<partinfo>BBa_K4452002 parameters</partinfo>
 
<!-- -->
 
<!-- -->
 +
 +
===References===
 +
[1] Chiung-Chih Chu, Krishna Swamy, Hsou-min Li, Tissue-Specific Regulation of Plastid Protein Import via Transit-Peptide Motifs, The Plant Cell, Volume 32, Issue 4, April 2020, Pages 1204–1217, https://doi.org/10.1105/tpc.19.00702

Latest revision as of 05:10, 10 October 2022


prcpHsc70-1 transit peptide

This transit peptide was identified for implementing root magnetotropism by overexpressing ferritin in statoliths of columella cells in Arabidopsis thaliana. While no statolith import sequences have been validated, this transit peptide was selected as a candidate sequence for importing ferritin into statoliths.

Background

To restore directional root growth in microgravity, Hopkins iGEM 2022 proposed that the existing gravitropic mechanisms can be engineered to respond to an artificial cue. We set out to engineer roots to grow in the direction of magnetic field gradients: magnetotropism.

Plants sense gravity via statoliths—starch-laden organelles in root tip columella cells—which sediment due to their weight. Statolith sedimentation triggers changes in the efflux of auxin, a universal plant hormone that induces plant cell elongation. Polarized auxin accumulation along the upper and lower sides of roots causes differential elongation of cells, guiding root growth in the direction of gravity.

We predicted that filling statoliths with iron-loading proteins, like ferritin, would allow the statoliths to move in response to a magnetic gradient. For our project we designed a genetic construct that allows for ferritin to be overexpressed in Arabidopsis and imported into statoliths.

Biology

In addition to overexpressing ferritin in the correct cells, we need to import the ferritin into the correct intracellular compartments, i.e the statoliths.

Statoliths are starch-laden organelles in plant cells. The class of organelles in plants that are involved in food synthesis and storage are called plastids. The plastids that are responsible for food synthesis usually contain pigments. Chloroplasts are an example of plastids that are involved in food synthesis and they contain the green pigment chlorophyll.

Plastids without pigments are called leucoplasts. Leucoplasts are responsible for food storage and are renamed for the type of food they store. Leucoplasts that store starch are called amyloplasts, and thus, statoliths are a type of amyloplast.

Proteins that originate from nuclear transcripts must have a transit peptide (TP) sequence on their N terminus, which will bind to translocons on the plastid membrane after its initial translation. The rest of the protein will then be translated directly into the plastid. No validated statolith import sequences are known, so we selected sequences to test. We searched for papers that mentioned root amyloplast TPs, and searched the Gene Ontology (GO) Resource for proteins known to be in the statolith that had annotated TPs.

Candidate: prcpHsc70-1 Transit Peptide

Chu et al. found that Arabidopsis (Arabidopsis thaliana) preprotein prcpHsc70-1 imported very well into leucoplasts, with a leucoplast import efficiency of 45%. Additionally, knockout mutants of Arabidopsis cpHsc70-1, one of a family of plastid Hsp70 proteins, have small size and slow root growth. This suggests that cpHsc70-1 may not only be localized to leucoplasts but statoliths in particular. [1]

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


References

[1] Chiung-Chih Chu, Krishna Swamy, Hsou-min Li, Tissue-Specific Regulation of Plastid Protein Import via Transit-Peptide Motifs, The Plant Cell, Volume 32, Issue 4, April 2020, Pages 1204–1217, https://doi.org/10.1105/tpc.19.00702