Difference between revisions of "Part:BBa K4414026"
Line 3: | Line 3: | ||
<partinfo>BBa_K4414026 short</partinfo> | <partinfo>BBa_K4414026 short</partinfo> | ||
− | This composite part consists of an N-terminal NR3C1 LBD(BBa_K4414000) domain and a C-terminal tetR(BBa_K4414009) domain fused with a GGGGGSG linker. It is designed to sense glucocorticoids and activates the transcription of the reporter gene. | + | This composite part consists of an N-terminal NR3C1 LBD([[BBa_K4414000]]) domain and a C-terminal tetR([[BBa_K4414009]]) domain fused with a GGGGGSG linker. It is designed to sense glucocorticoids and activates the transcription of the reporter gene. |
==Usage and Biology== | ==Usage and Biology== | ||
− | As a glucocorticoid sensor, this part is designed to enter the nucleus upon glucocorticoid stimulation and bind to the TCE promoter to activate downstream transcription. This part consists of a tetR DNA binding domain, which binds to the TCE promoter (BBa_K4016011) consisting of seven direct 19-bp tet operator sequence (tetO) repeats. The NR3C1 LBD domain on the N terminal is the ligand binding domain of the glucocorticoid receptor(GR). This LBD domain can translocate the fusion protein into the nucleus upon glucocorticoid stimulation. It also has a transactivating domain 2 (τ2) and an activation function domain 2 (AF2) which activates downstream gene expression.[1] | + | As a glucocorticoid sensor, this part is designed to enter the nucleus upon glucocorticoid stimulation and bind to the TCE promoter to activate downstream transcription. This part consists of a tetR DNA binding domain, which binds to the TCE promoter ([[BBa_K4016011]]) consisting of seven direct 19-bp tet operator sequence (tetO) repeats. The NR3C1 LBD domain on the N terminal is the ligand binding domain of the glucocorticoid receptor(GR). This LBD domain can translocate the fusion protein into the nucleus upon glucocorticoid stimulation. It also has a transactivating domain 2 (τ2) and an activation function domain 2 (AF2) which activates downstream gene expression.[1] |
<html> | <html> | ||
Line 18: | Line 18: | ||
</html> | </html> | ||
− | Figure1. Schematic figure of | + | Figure1. Schematic figure of ([[Ba_K4414026]]) and ([[BBa_K4414041]]) |
<span class='h3bb'>Sequence and Features</span> | <span class='h3bb'>Sequence and Features</span> | ||
Line 30: | Line 30: | ||
==Functional Test== | ==Functional Test== | ||
− | To test the ability of this part to respond to glucocorticoids, HEK-293T cells were co-transfected with plasmids encoding both BBa_K4414026 and TCE-SEAP(BBa_K4414041). | + | To test the ability of this part to respond to glucocorticoids, HEK-293T cells were co-transfected with plasmids encoding both BBa_K4414026 and TCE-SEAP([[BBa_K4414041]]). |
===Method=== | ===Method=== | ||
<html> | <html> |
Revision as of 11:49, 9 October 2022
LBD-GGGGGSG-tetR
This composite part consists of an N-terminal NR3C1 LBD(BBa_K4414000) domain and a C-terminal tetR(BBa_K4414009) domain fused with a GGGGGSG linker. It is designed to sense glucocorticoids and activates the transcription of the reporter gene.
Usage and Biology
As a glucocorticoid sensor, this part is designed to enter the nucleus upon glucocorticoid stimulation and bind to the TCE promoter to activate downstream transcription. This part consists of a tetR DNA binding domain, which binds to the TCE promoter (BBa_K4016011) consisting of seven direct 19-bp tet operator sequence (tetO) repeats. The NR3C1 LBD domain on the N terminal is the ligand binding domain of the glucocorticoid receptor(GR). This LBD domain can translocate the fusion protein into the nucleus upon glucocorticoid stimulation. It also has a transactivating domain 2 (τ2) and an activation function domain 2 (AF2) which activates downstream gene expression.[1]
Figure1. Schematic figure of (Ba_K4414026) and (BBa_K4414041)
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Functional Test
To test the ability of this part to respond to glucocorticoids, HEK-293T cells were co-transfected with plasmids encoding both BBa_K4414026 and TCE-SEAP(BBa_K4414041).
Method
Cells were treated with 10, 50, or 100 nM Glucocorticoids 6 h post-transfection. Cells without glucocorticoid treatment were used as control. Culture medium was collected at 24 h or 48 h post glucocorticoids treatment. SEAP activity was measured according to a published protocol. [2]
Result
Results showed significantly increased SEAP expression in glucocorticoid-treated cells compared to the non-treated control (2-20 folds). A dose dependence was observed within 0-100 nM of glucocorticoid (Figure 2). Figure2. Glucocorticoid-stimulated transcriptional activation of SEAP mediated by BBa_K4414026.
Reference
[1]Weikum ER, Knuesel MT, Ortlund EA, Yamamoto KR. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol. 2017 Mar;18(3):159-174. doi: 10.1038/nrm.2016.152. Epub 2017 Jan 5. PMID: 28053348; PMCID: PMC6257982.
[2]Shao J, Qiu X, Xie M. Engineering Mammalian Cells to Control Glucose Homeostasis. Methods Mol Biol. 2021;2312:35-57. doi: 10.1007/978-1-0716-1441-9_3. PMID: 34228283.