Difference between revisions of "Part:BBa K4447003"

(Usage and Biology)
(Usage and Biology)
Line 19: Line 19:
 
In our project, rifampicin monooxygenase <b>(EC 1.14.13.211)</b> is used as a detector for the presence of rifampicin by catalyzing the hydroxylation of rifampicin to 2'-N-hydroxy-4-oxo-rifampicin, a metabolite with much lower antimicrobial activity. As shown in <b>Figure 1</b>, this reaction requires NADPH as a reagent and, therefore, gives NADP+ as a reaction product. Consequently, it is possible to evaluate the presence of rifampicin through a coupled reaction employing a NADP+/NADPH colorimetric assay.
 
In our project, rifampicin monooxygenase <b>(EC 1.14.13.211)</b> is used as a detector for the presence of rifampicin by catalyzing the hydroxylation of rifampicin to 2'-N-hydroxy-4-oxo-rifampicin, a metabolite with much lower antimicrobial activity. As shown in <b>Figure 1</b>, this reaction requires NADPH as a reagent and, therefore, gives NADP+ as a reaction product. Consequently, it is possible to evaluate the presence of rifampicin through a coupled reaction employing a NADP+/NADPH colorimetric assay.
  
 
+
Rifampicin monooxygenase, as pictured below in <b>Figure 2</b> is a dimeric protein that has 474 amino acids in length and 51.4 kDa in weight (Hoshino et al., 2010). Koteva and collaborators (2018) reported a Michaelis constant of 12 µM for rifampicin, concluding it has a unique affinity for this substrate.
Pentachlorophenol 4-monooxygenase, as pictured below in Figure 2 is a dimeric protein that belongs to the family of flavin-dependent phenol hydroxylases. It has 539 amino acids in length and 60.1 kDa in weight (Cai & Xun, 2002). Hlouchova et al. (2012) reported a Michaelis constant of 1 mM for pentachlorophenol, concluding that this enzyme is not well evolved for turnover of this substrate. Nevertheless, this value is smaller than the one for 2,3,5,6-tetrachlorophenol, showing more preference for our desired substrate.
+

Revision as of 04:59, 29 September 2022


RifMo coding sequence

Rifampicin monooxygenase coding sequence from Nocardia farcinica. This enzyme catalyzes the oxidation of rifampicin, thereby inactivating its antibiotic activity. It constitutes a secondary rifampicin resistance factor.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NotI site found at 1225
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal XhoI site found at 1456
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Usage and Biology


In our project, rifampicin monooxygenase (EC 1.14.13.211) is used as a detector for the presence of rifampicin by catalyzing the hydroxylation of rifampicin to 2'-N-hydroxy-4-oxo-rifampicin, a metabolite with much lower antimicrobial activity. As shown in Figure 1, this reaction requires NADPH as a reagent and, therefore, gives NADP+ as a reaction product. Consequently, it is possible to evaluate the presence of rifampicin through a coupled reaction employing a NADP+/NADPH colorimetric assay.

Rifampicin monooxygenase, as pictured below in Figure 2 is a dimeric protein that has 474 amino acids in length and 51.4 kDa in weight (Hoshino et al., 2010). Koteva and collaborators (2018) reported a Michaelis constant of 12 µM for rifampicin, concluding it has a unique affinity for this substrate.