Difference between revisions of "Part:BBa K4447002"
(→Usage and Biology) |
(→Usage and Biology) |
||
Line 16: | Line 16: | ||
In our project, pentachlorophenol 4-monooxygenase (EC.1.14.13.50) is used as a detector for the presence of pentachlorophenol by catalyzing the dechlorination of pentachlorophenol to tetrachlorobenzoquinone, requiring NADPH as a reagent and, therefore, obtaining NADP+ as a reaction product. Consequently, it is possible to evaluate the presence of pentachlorophenol through a coupled reaction employing a NADP+/NADPH colorimetric assay. The following image shows the complete reaction according to Hlouchova <i>et al.</i> (2012): | In our project, pentachlorophenol 4-monooxygenase (EC.1.14.13.50) is used as a detector for the presence of pentachlorophenol by catalyzing the dechlorination of pentachlorophenol to tetrachlorobenzoquinone, requiring NADPH as a reagent and, therefore, obtaining NADP+ as a reaction product. Consequently, it is possible to evaluate the presence of pentachlorophenol through a coupled reaction employing a NADP+/NADPH colorimetric assay. The following image shows the complete reaction according to Hlouchova <i>et al.</i> (2012): | ||
− | Pentachlorophenol 4-monooxygenase is a dimeric protein that belongs to the family of flavin-dependent phenol hydroxylases. It has 539 amino acids in length and 60.1 kDa in weight (Cai & Xun, 2002). According to Hlouchova <i>et al.</i> (2012) reported a Michaelis constant of 1 mM for pentachlorophenol, concluding that this enzyme is not well evolved for turnover of this substrate. Nevertheless, this value is smaller than the one for 2,3,5,6-tetrachlorophenol, showing more preference for our desired substrate. Next, we present the three-dimensional structure of | + | Pentachlorophenol 4-monooxygenase (Pcp) is a dimeric protein that belongs to the family of flavin-dependent phenol hydroxylases. It has 539 amino acids in length and 60.1 kDa in weight (Cai & Xun, 2002). According to Hlouchova <i>et al.</i> (2012) reported a Michaelis constant of 1 mM for pentachlorophenol, concluding that this enzyme is not well evolved for turnover of this substrate. Nevertheless, this value is smaller than the one for 2,3,5,6-tetrachlorophenol, showing more preference for our desired substrate. Next, we present the three-dimensional structure of Pcp generated by AlphaFold2 using MMSeqs2 (Mirdita et al., 2022). This structure is as follows: |
Revision as of 16:13, 28 September 2022
Pcp coding sequence
Pentachlorophenol 4-monooxygenase coding sequence from Flavobacterium sp. This enzyme, a FAD binding and NADPH requiring oxygenase, catalyzes the oxygenolytic removal of the first chlorine from pentachlorophenol.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal XhoI site found at 1651
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Contents
Usage and Biology
In our project, pentachlorophenol 4-monooxygenase (EC.1.14.13.50) is used as a detector for the presence of pentachlorophenol by catalyzing the dechlorination of pentachlorophenol to tetrachlorobenzoquinone, requiring NADPH as a reagent and, therefore, obtaining NADP+ as a reaction product. Consequently, it is possible to evaluate the presence of pentachlorophenol through a coupled reaction employing a NADP+/NADPH colorimetric assay. The following image shows the complete reaction according to Hlouchova et al. (2012):
Pentachlorophenol 4-monooxygenase (Pcp) is a dimeric protein that belongs to the family of flavin-dependent phenol hydroxylases. It has 539 amino acids in length and 60.1 kDa in weight (Cai & Xun, 2002). According to Hlouchova et al. (2012) reported a Michaelis constant of 1 mM for pentachlorophenol, concluding that this enzyme is not well evolved for turnover of this substrate. Nevertheless, this value is smaller than the one for 2,3,5,6-tetrachlorophenol, showing more preference for our desired substrate. Next, we present the three-dimensional structure of Pcp generated by AlphaFold2 using MMSeqs2 (Mirdita et al., 2022). This structure is as follows: