Difference between revisions of "Part:BBa K4247017"

(Usage and Biology)
Line 5: Line 5:
 
Silk proteins are becoming increasingly popular fibres for biomaterials in many biotechnological fields, from medicine to common consumables. In 2013, Yang and colleagues discovered a new silk-like protein in the sea anemone Nematostella vectensis. This sea-star anemone lives along the coasts of England and the USA, and has been used for a long time as a model organism for the phylum Cnidaria. The protein was an hypothetical protein found in the model genome when Yang et al. (2013) discovered it. It’s characterised by its localisation in the nematocysts of the tentacles (the harpoon-like weapons of Cnidarians) and by the repetitive motif GPGNTGYPGQ.  
 
Silk proteins are becoming increasingly popular fibres for biomaterials in many biotechnological fields, from medicine to common consumables. In 2013, Yang and colleagues discovered a new silk-like protein in the sea anemone Nematostella vectensis. This sea-star anemone lives along the coasts of England and the USA, and has been used for a long time as a model organism for the phylum Cnidaria. The protein was an hypothetical protein found in the model genome when Yang et al. (2013) discovered it. It’s characterised by its localisation in the nematocysts of the tentacles (the harpoon-like weapons of Cnidarians) and by the repetitive motif GPGNTGYPGQ.  
  
[[File: Aneroin.jpeg]]
+
[[File: Aneroin.jpeg|200px|]]
  
 
The protein has high levels of glycine and proline, the GXX repeat motif of collagens and the GPGXX repeat of spider silks, suggesting its involvement with prey capture and potential for fiber formation. Considerinng its properties, we exploited it to include it in a biocomposite material to substitute nylon in fishing nets, but it has also been used as part of artificial heart valves.
 
The protein has high levels of glycine and proline, the GXX repeat motif of collagens and the GPGXX repeat of spider silks, suggesting its involvement with prey capture and potential for fiber formation. Considerinng its properties, we exploited it to include it in a biocomposite material to substitute nylon in fishing nets, but it has also been used as part of artificial heart valves.

Revision as of 15:03, 26 September 2022

Aneroin

This part contains the full sequence of Aneroin, a fiber-forming protein located in the tentacles of Nematostella vectensis -a sea anemone. This sequence is extremely repetitive but it has been shown it can be used to produce fibres comparable in strength with spider silks and collagens.

Usage and Biology

Silk proteins are becoming increasingly popular fibres for biomaterials in many biotechnological fields, from medicine to common consumables. In 2013, Yang and colleagues discovered a new silk-like protein in the sea anemone Nematostella vectensis. This sea-star anemone lives along the coasts of England and the USA, and has been used for a long time as a model organism for the phylum Cnidaria. The protein was an hypothetical protein found in the model genome when Yang et al. (2013) discovered it. It’s characterised by its localisation in the nematocysts of the tentacles (the harpoon-like weapons of Cnidarians) and by the repetitive motif GPGNTGYPGQ.

Aneroin.jpeg

The protein has high levels of glycine and proline, the GXX repeat motif of collagens and the GPGXX repeat of spider silks, suggesting its involvement with prey capture and potential for fiber formation. Considerinng its properties, we exploited it to include it in a biocomposite material to substitute nylon in fishing nets, but it has also been used as part of artificial heart valves.