Difference between revisions of "Part:BBa K4202004:Experience"
Eeeeeartha (Talk | contribs) |
Eeeeeartha (Talk | contribs) |
||
Line 20: | Line 20: | ||
===Hydrated CO<sub>2</sub> activity of CA=== | ===Hydrated CO<sub>2</sub> activity of CA=== | ||
+ | <p>To measure the activity of CA, we used the modified Wilbur-Anderson's method. As we know, CA can catalyze CO<sub>2</sub> hydration and at the same time release H<sup>+</sup> reducing the pH. According to that, we chose bromothymol blue, an acid-base indicator that appears yellow when pH≤6 and blue when pH > 7.6. Therefore, the color development of bromothymol blue can indirectly reflect the change of pH from 8.0 to 6.0 by CA. </p> | ||
+ | <br> | ||
+ | <p>After adding ice-saturated CO<sub>2</sub> solution for 10min, the color of the tubes containing crude enzyme solution CA1 and CA2 began to change, indicating that the pH of the solution began to decrease. After 10min, the tubes containing the crude enzyme solution showed significant discoloration, and after 5 days, the tubes containing the CA1 crude enzyme solution turned completely yellow, implying that the pH had decreased from 8.0 to 6.0 due to the formation of H<sup>+</sup> during CO<sub>2</sub> hydration(Fig.1-3).</p> | ||
+ | <br> | ||
+ | <p>The activity of CA1 and CA2 were verified in this experiment, but the enzyme activities were weak, possibly due to low enzyme expression or insufficient concentration of unpurified enzyme. In addition, the catalytic rate of CA2 crude enzyme solution was lower than that of CA1.</p> | ||
+ | <br> | ||
+ | <div align="center">[[File:Liu Junyi 1-3.png]]</div> | ||
+ | <br> | ||
+ | <div align="center"><b>Fig 1-3</b> The activity of CA detected by the Wilbur-Anderson's method. From left to right, the four tubes were pH=6.0 Tris-HCl buffer with bromothymol blue indicator, reaction system with blank WB600 lysate, CA2 crude enzyme solution, CA1 crude enzyme solution. A: Initial reaction solution(0min); B: 10min after adding ice-saturated CO<sub>2</sub> solution; C: 5d after adding ice-saturated CO<sub>2</sub> solution.</div> | ||
+ | |||
===User Reviews=== | ===User Reviews=== |
Revision as of 15:31, 25 September 2022
As Part:BBa_K4202004 is improved by codon optimization from Part:BBa_K2232000, we have done a series of control experiments to compare the function of two parts. Both of the two parts encodes carbonic anhydrase, so we name the carbonic anhydrase expressed by Part:BBa_K2232000 as CA1, while name the carbonic anhydrase expressed by Part:BBa_K4202004 as CA2.
Expression of BBa_K4202004
After chemical transformation of plasmid with this part, the transformed Bacillus subtilis WB600 were cultured in optimized LB and SMM medium, and obtained crude enzyme solution by centrifugation and ultrasonic disruption.Then we detected the molecular mass by SDS-PAGE and coomassie blue staining.
SDS-PAGE displayed bands of 37kDa and 74kDa for CA monomer and dimer, which didn' t exist in the control group(Fig.1-1).
Purification of TSLV-BS-CA
We added a 6X His tag to the N-terminus of CA on the vector, and the CA was purified by agarose-nickel column affinity chromatography. SDS-page analysis was performed on the flowing fluid, washing fluid and eluent during the purification of CA1 and CA2 by Ni-column. The eluate of CA1 and CA2 had two obvious bands at 37kDa and 74kDa, which were monomer CA and dimer CA, respectively. However, the Ni column had much non-specific protein binding, we can add a small amount of imidazole to reduce non-specific protein binding(Fig.1-2).
Hydrated CO2 activity of CA
To measure the activity of CA, we used the modified Wilbur-Anderson's method. As we know, CA can catalyze CO2 hydration and at the same time release H+ reducing the pH. According to that, we chose bromothymol blue, an acid-base indicator that appears yellow when pH≤6 and blue when pH > 7.6. Therefore, the color development of bromothymol blue can indirectly reflect the change of pH from 8.0 to 6.0 by CA.
After adding ice-saturated CO2 solution for 10min, the color of the tubes containing crude enzyme solution CA1 and CA2 began to change, indicating that the pH of the solution began to decrease. After 10min, the tubes containing the crude enzyme solution showed significant discoloration, and after 5 days, the tubes containing the CA1 crude enzyme solution turned completely yellow, implying that the pH had decreased from 8.0 to 6.0 due to the formation of H+ during CO2 hydration(Fig.1-3).
The activity of CA1 and CA2 were verified in this experiment, but the enzyme activities were weak, possibly due to low enzyme expression or insufficient concentration of unpurified enzyme. In addition, the catalytic rate of CA2 crude enzyme solution was lower than that of CA1.
User Reviews
UNIQ6fc756a4ec3e8fae-partinfo-00000000-QINU UNIQ6fc756a4ec3e8fae-partinfo-00000001-QINU