Difference between revisions of "Part:BBa K3945004"
(→Usage and Biology) |
|||
Line 3: | Line 3: | ||
− | |||
===Usage and Biology=== | ===Usage and Biology=== | ||
− | <p>Lanmodulin is recently a novel lanthanide binding protein from <I>Methylobacterium extorquens</i> that displays more than 100-million fold selectivity for rare earth elements [1]. Such affinity and selectivity have not been observed in any previously studied macromolecule. In addition, lanmodulin is extremely robust, capable of withstanding temperatures as high as 95 °C and pH levels as low as 2.5 [2]. Thus, allowing it to be the perfect molecular tool for us in an efficient rare earth recovery system.</p> | + | <p>Lanmodulin is recently a novel lanthanide binding protein from <I>Methylobacterium extorquens</i> that displays more than 100-million fold selectivity for rare earth elements [1]. Such affinity and selectivity have not been observed in any previously studied macromolecule. In addition, lanmodulin is extremely robust, capable of withstanding temperatures as high as 95 °C and pH levels as low as 2.5 [2]. Thus, allowing it to be the perfect molecular tool for us in an efficient rare earth recovery system.</p> |
+ | |||
+ | <p> We have mutated the lanmodulin sequence using a probabilistic mean optimized model to improve the binding capacity of lanmodulin's fourth binding pocket. </p> | ||
===Design=== | ===Design=== | ||
− | + | ||
===Sequence and Features=== | ===Sequence and Features=== | ||
Line 15: | Line 16: | ||
===References=== | ===References=== | ||
+ | <p> | ||
+ | 1. JA C, ER F, JA M, JV H, TN L. Lanmodulin: A Highly Selective Lanthanide-Binding Protein from a Lanthanide-Utilizing Bacterium. Journal of the American Chemical Society. 2018 [accessed 2021 Sep 17];140(44):15056–15061. https://pubmed.ncbi.nlm.nih.gov/30351021/. doi:10.1021/JACS.8B09842 </p> | ||
+ | |||
+ | <p> 2. GJ D, JA M, DM P, DW R, JA C, Y J. Selective and Efficient Biomacromolecular Extraction of Rare-Earth Elements using Lanmodulin. Inorganic chemistry. 2020 [accessed 2021 Sep 17];59(17):11855–11867. https://pubmed.ncbi.nlm.nih.gov/32686425/. doi:10.1021/ACS.INORGCHEM.0C01303 | ||
+ | </p> |
Revision as of 03:35, 22 October 2021
Probabilistic Mean Optimized Mutated Lanmodulin (PMO LanM)
Usage and Biology
Lanmodulin is recently a novel lanthanide binding protein from Methylobacterium extorquens that displays more than 100-million fold selectivity for rare earth elements [1]. Such affinity and selectivity have not been observed in any previously studied macromolecule. In addition, lanmodulin is extremely robust, capable of withstanding temperatures as high as 95 °C and pH levels as low as 2.5 [2]. Thus, allowing it to be the perfect molecular tool for us in an efficient rare earth recovery system.
We have mutated the lanmodulin sequence using a probabilistic mean optimized model to improve the binding capacity of lanmodulin's fourth binding pocket.
Design
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BamHI site found at 111
Illegal BamHI site found at 186 - 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
References
1. JA C, ER F, JA M, JV H, TN L. Lanmodulin: A Highly Selective Lanthanide-Binding Protein from a Lanthanide-Utilizing Bacterium. Journal of the American Chemical Society. 2018 [accessed 2021 Sep 17];140(44):15056–15061. https://pubmed.ncbi.nlm.nih.gov/30351021/. doi:10.1021/JACS.8B09842
2. GJ D, JA M, DM P, DW R, JA C, Y J. Selective and Efficient Biomacromolecular Extraction of Rare-Earth Elements using Lanmodulin. Inorganic chemistry. 2020 [accessed 2021 Sep 17];59(17):11855–11867. https://pubmed.ncbi.nlm.nih.gov/32686425/. doi:10.1021/ACS.INORGCHEM.0C01303