Difference between revisions of "Part:BBa K3771036"
Minghan1005 (Talk | contribs) |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
<partinfo>BBa_K3771036 short</partinfo> | <partinfo>BBa_K3771036 short</partinfo> | ||
− | + | <html> | |
+ | <br><b style="font-size:1.3rem">Description</b> | ||
+ | <br> | ||
+ | <br>This composite part is a component of the IFN-γ sensing system and was used to express the taurine production enzyme, CSAD. | ||
+ | <br> | ||
+ | |||
+ | <br><b style="font-size:1.3rem">Biology</b> | ||
+ | <br> | ||
+ | |||
+ | <br>The <i>ompA</i> promoter facilitates the constitutive expression of OmpA/OprF. Binding of IFN-γ to the OmpA/OprF chimeric protein induces the response of the phage shock protein (Psp) system, a highly conserved stress response system in enterobacteria[1]. Signal transduction from the outer membrane to the inner membrane activates the <i>pspA</i> promoter, initiating expression of CSAD. CSAD catalyzes the decarboxylation of L-Cysteine sulfinic acid into hypotaurine, which is spontaneously oxidized to taurine[2]. | ||
+ | <br> | ||
+ | <div style="width=100%; display:flex; align-items: center; justify-content: center;"> | ||
+ | <img src="https://2021.igem.org/wiki/images/c/c9/T--NCKU_Tainan--taurine_pathway_1.png" style="width:60%;"> | ||
+ | </div> | ||
+ | <p align="center">Fig. 1. Taurine pathways in <i>E. coli</i></p> | ||
+ | <br><b style="font-size:1.3rem">Usage</b> | ||
+ | <br> | ||
+ | |||
+ | <br>We ligased the <i>P<sub>ompA</sub>-ompA/oprF</i> fragment and <i>P<sub>pspA</sub>-csad</i> on the pSU expression vector and transformed it into DH5α to complete construction of the plasmid. | ||
+ | <br> | ||
+ | |||
+ | <br><b style="font-size:1.3rem">Characterization</b> | ||
+ | <br> | ||
+ | |||
+ | <br>Double digestion results are shown in Figure 2. | ||
+ | <br> | ||
+ | |||
+ | <div style="width=100%; display:flex; align-items: center; justify-content: center;"> | ||
+ | <img src="https://2021.igem.org/wiki/images/d/d7/T--NCKU_Tainan--pspAcsadv.jpg" style="width:40%;"> | ||
+ | </div> | ||
+ | <p align="center">Fig. 2. Double digestion check of <i>P<sub>pspA</sub>-csad</i></p> | ||
+ | <div style="width=100%; display:flex; align-items: center; justify-content: center;"> | ||
+ | <img src="https://2021.igem.org/wiki/images/2/22/T--NCKU_Tainan--colony_pspAcsadompA.jpg | ||
+ | " style="width:40%;"> | ||
+ | </div> | ||
+ | <p align="center">Fig. 3. Colony PCR confirmation of the construction</p> | ||
+ | <br><b style="font-size:1.3rem">References</b> | ||
+ | <br> | ||
+ | |||
+ | <br>1. Darwin AJ. The phage-shock-protein response. <i>Molecular Microbiology</i>. 2005;57(3):621-628. doi:10.1111/j.1365-2958.2005.04694.x | ||
+ | <a href="https://pubmed.ncbi.nlm.nih.gov/16045608/" alt="" target="_blank">https://pubmed.ncbi.nlm.nih.gov/16045608/</a> | ||
+ | <br> | ||
+ | <br> | ||
+ | 2. Joo Y-C, Ko YJ, You SK, et al. Creating a New Pathway in Corynebacterium glutamicum for the Production of Taurine as a Food Additive. <i>Journal of Agricultural and Food Chemistry</i>. 2018;66(51):13454-13463. doi:10.1021/acs.jafc.8b05093 | ||
+ | <a href="https://pubmed.ncbi.nlm.nih.gov/30516051/" alt="" target="_blank">https://pubmed.ncbi.nlm.nih.gov/30516051/</a> | ||
+ | <br> | ||
+ | </html> | ||
<!-- Add more about the biology of this part here | <!-- Add more about the biology of this part here | ||
===Usage and Biology=== | ===Usage and Biology=== |
Latest revision as of 03:16, 22 October 2021
PpspA-CSAD-PompA-OmpA/OprF
Description
This composite part is a component of the IFN-γ sensing system and was used to express the taurine production enzyme, CSAD.
Biology
The ompA promoter facilitates the constitutive expression of OmpA/OprF. Binding of IFN-γ to the OmpA/OprF chimeric protein induces the response of the phage shock protein (Psp) system, a highly conserved stress response system in enterobacteria[1]. Signal transduction from the outer membrane to the inner membrane activates the pspA promoter, initiating expression of CSAD. CSAD catalyzes the decarboxylation of L-Cysteine sulfinic acid into hypotaurine, which is spontaneously oxidized to taurine[2].
Fig. 1. Taurine pathways in E. coli
Usage
We ligased the PompA-ompA/oprF fragment and PpspA-csad on the pSU expression vector and transformed it into DH5α to complete construction of the plasmid.
Characterization
Double digestion results are shown in Figure 2.
Fig. 2. Double digestion check of PpspA-csad
Fig. 3. Colony PCR confirmation of the construction
References
1. Darwin AJ. The phage-shock-protein response. Molecular Microbiology. 2005;57(3):621-628. doi:10.1111/j.1365-2958.2005.04694.x https://pubmed.ncbi.nlm.nih.gov/16045608/
2. Joo Y-C, Ko YJ, You SK, et al. Creating a New Pathway in Corynebacterium glutamicum for the Production of Taurine as a Food Additive. Journal of Agricultural and Food Chemistry. 2018;66(51):13454-13463. doi:10.1021/acs.jafc.8b05093 https://pubmed.ncbi.nlm.nih.gov/30516051/
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 12
Illegal BamHI site found at 2776 - 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 394
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 179