Difference between revisions of "Part:BBa K3814001:Design"
(Summary: Adding Bulk of Design) |
|||
Line 7: | Line 7: | ||
===Design Notes=== | ===Design Notes=== | ||
− | Restriction | + | |
+ | We have designed an inducible promoter that combines the work of two researchers (Schell & Poser, 1989; Meyer et al., 2018). It uses the nahR gene and sal promoters to activate transcription in response to the inducer salicylate, and can with a few base changes in the promoter, can provide different promoter effects. See below a diagram of the design and the base changes that induce varying transcription level effects: | ||
+ | |||
+ | [[File:T--Sydney_Australia--salpromoter.png|options|Figure 1. Inducible promoter design. According to Cebolla et al. (1997), nahR produces a transcription factor that controls the expression of genes regulated by sal promoters. In the presence of salicylate, expression of those genes is facilitated. | ||
+ | ]] | ||
+ | |||
+ | |||
+ | Restriction enzymes were removed to minimise off-target effects. Substitute bases were chosen to most closely match the natural codon frequency in bacteria. | ||
+ | |||
Line 16: | Line 24: | ||
===References=== | ===References=== | ||
+ | |||
+ | Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J., & Voigt, C. A. (2018). Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nature Chemical Biology, 15(2), 196–204. https://doi.org/10.1038/s41589-018-0168-3 | ||
+ | |||
+ | |||
+ | Schell, M. A., & Poser, E. F. (1989). Demonstration, characterization, and mutational analysis of NahR protein binding to nah and sal promoters. Journal of Bacteriology, 171(2), 837–846. https://doi.org/10.1128/jb.171.2.837-846.1989 |
Revision as of 13:44, 21 October 2021
nahR gene in P. putida + promoter + RBS
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 951
Illegal NheI site found at 974 - 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Design Notes
We have designed an inducible promoter that combines the work of two researchers (Schell & Poser, 1989; Meyer et al., 2018). It uses the nahR gene and sal promoters to activate transcription in response to the inducer salicylate, and can with a few base changes in the promoter, can provide different promoter effects. See below a diagram of the design and the base changes that induce varying transcription level effects:
Restriction enzymes were removed to minimise off-target effects. Substitute bases were chosen to most closely match the natural codon frequency in bacteria.
Source
Pseudomonas putida genome
References
Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J., & Voigt, C. A. (2018). Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nature Chemical Biology, 15(2), 196–204. https://doi.org/10.1038/s41589-018-0168-3
Schell, M. A., & Poser, E. F. (1989). Demonstration, characterization, and mutational analysis of NahR protein binding to nah and sal promoters. Journal of Bacteriology, 171(2), 837–846. https://doi.org/10.1128/jb.171.2.837-846.1989