Difference between revisions of "Part:BBa K3883031"
m (→Usage and Biology) |
m (→Usage and Biology) |
||
Line 10: | Line 10: | ||
The introduction of mutations in the nuclease domain of Cas9 from Streptococcus pyogenes produces nuclease defects, turning Cas9 into dCas9 protein which is deficient in nucleic acid cutting activity. But it can still target and bind certain DNA with the same precision under the guidance of the corresponding RNA. | The introduction of mutations in the nuclease domain of Cas9 from Streptococcus pyogenes produces nuclease defects, turning Cas9 into dCas9 protein which is deficient in nucleic acid cutting activity. But it can still target and bind certain DNA with the same precision under the guidance of the corresponding RNA. | ||
Artificial synthesis of sgRNA2(<partinfo>BBa_K3883005</partinfo>) includes a pairing region binding to gene gltA and a Cas9 handle region interacting with dCas9, so that dCas9-sgRNA2 complex can bind to target DNA elements and cause spatial block to prevent transcription extension of RNA polymerase, resulting in precise site-specific regulation of gene gltA without causing DNA damage. | Artificial synthesis of sgRNA2(<partinfo>BBa_K3883005</partinfo>) includes a pairing region binding to gene gltA and a Cas9 handle region interacting with dCas9, so that dCas9-sgRNA2 complex can bind to target DNA elements and cause spatial block to prevent transcription extension of RNA polymerase, resulting in precise site-specific regulation of gene gltA without causing DNA damage. | ||
− | Citrate synthase is a key enzyme in the tricarboxylic acid cycle. Inhibition of GltA gene encoding this enzyme through this part can effectively inhibit the tricarboxylic acid cycle, thus reducing the metabolic shunt of acetyl-CoA and making acetyl-CoA flow to the pathway of acetic acid synthesis to the maximum extent.For more information, please visit our Design page:[https://2021.igem.org/Team:Jilin_China/Design] | + | Citrate synthase is a key enzyme in the tricarboxylic acid cycle. Inhibition of GltA gene encoding this enzyme through this part can effectively inhibit the tricarboxylic acid cycle, thus reducing the metabolic shunt of acetyl-CoA and making acetyl-CoA flow to the pathway of acetic acid synthesis to the maximum extent.For more information, please visit our Design page: |
+ | [https://2021.igem.org/Team:Jilin_China/Design Jilin_China 2021 Design] | ||
===Characterization=== | ===Characterization=== |
Revision as of 15:30, 20 October 2021
targeted knockdown the expression of gltA gene through CRISPRi
This part targeted knockdown the expression of gltA gene through CRISPRi to downregulate TCA cycle.By qRT-PCR, the inhibitory effect of CRISPRi system on gltA gene is verified.
Usage and Biology
The introduction of mutations in the nuclease domain of Cas9 from Streptococcus pyogenes produces nuclease defects, turning Cas9 into dCas9 protein which is deficient in nucleic acid cutting activity. But it can still target and bind certain DNA with the same precision under the guidance of the corresponding RNA. Artificial synthesis of sgRNA2(BBa_K3883005) includes a pairing region binding to gene gltA and a Cas9 handle region interacting with dCas9, so that dCas9-sgRNA2 complex can bind to target DNA elements and cause spatial block to prevent transcription extension of RNA polymerase, resulting in precise site-specific regulation of gene gltA without causing DNA damage. Citrate synthase is a key enzyme in the tricarboxylic acid cycle. Inhibition of GltA gene encoding this enzyme through this part can effectively inhibit the tricarboxylic acid cycle, thus reducing the metabolic shunt of acetyl-CoA and making acetyl-CoA flow to the pathway of acetic acid synthesis to the maximum extent.For more information, please visit our Design page: Jilin_China 2021 Design
Characterization
Characterizations of this part is in exactly the same way as BBa_K3883030.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 1202
Illegal NheI site found at 4217
Illegal NheI site found at 4240 - 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 49