Difference between revisions of "Part:BBa K4020012"

 
 
Line 1: Line 1:
 
+
==Usage and Biology==
 +
SID linker (TEV site included) is a sequence of modified SID from SALSA protein with an integrated TEV protease recognition site. SIDs are roughly 20-amino-acid-long threonine-serine-proline-rich stretches of intrinsically disordered regions separating the SRCR domains in the SALSA protein. (Reichhardt et al., 2020; Turenchalk & Xu, 2001). TEV linker codes for the sequence of amino acids ENLYFQG/S, which TEV protease recognizes and cleaves between Q and G/S (Nam et al., 2020). It is synthetic DNA.
 +
==References==
 +
*Nam, H., Hwang, B. J., Choi, D., Shin, S., & Choi, M. (2020). Tobacco etch virus (TEV) protease with multiple mutations to improve solubility and reduce self‐cleavage exhibits enhanced enzymatic activity. FEBS Open Bio, 10(4), 619. https://doi.org/10.1002/2211-5463.12828
 +
*Reichhardt, M. P., Loimaranta, V., Lea, S. M., & Johnson, S. (2020). Structures of SALSA/DMBT1 SRCR domains reveal the conserved ligand-binding mechanism of the ancient SRCR fold. Life Science Alliance, 3(4). https://doi.org/10.26508/LSA.201900502
 +
*Turenchalk, G. S., & Xu, T. (2001). Lats in Cell-cycle Regulation and Tumorigenesis BT - Encyclopedic Reference of Cancer. Encyclopedic Reference of Cancer, 491–496. https://doi.org/10.1007/3-540-30683-8_944

Latest revision as of 20:48, 18 October 2021

Usage and Biology

SID linker (TEV site included) is a sequence of modified SID from SALSA protein with an integrated TEV protease recognition site. SIDs are roughly 20-amino-acid-long threonine-serine-proline-rich stretches of intrinsically disordered regions separating the SRCR domains in the SALSA protein. (Reichhardt et al., 2020; Turenchalk & Xu, 2001). TEV linker codes for the sequence of amino acids ENLYFQG/S, which TEV protease recognizes and cleaves between Q and G/S (Nam et al., 2020). It is synthetic DNA.

References

  • Nam, H., Hwang, B. J., Choi, D., Shin, S., & Choi, M. (2020). Tobacco etch virus (TEV) protease with multiple mutations to improve solubility and reduce self‐cleavage exhibits enhanced enzymatic activity. FEBS Open Bio, 10(4), 619. https://doi.org/10.1002/2211-5463.12828
  • Reichhardt, M. P., Loimaranta, V., Lea, S. M., & Johnson, S. (2020). Structures of SALSA/DMBT1 SRCR domains reveal the conserved ligand-binding mechanism of the ancient SRCR fold. Life Science Alliance, 3(4). https://doi.org/10.26508/LSA.201900502
  • Turenchalk, G. S., & Xu, T. (2001). Lats in Cell-cycle Regulation and Tumorigenesis BT - Encyclopedic Reference of Cancer. Encyclopedic Reference of Cancer, 491–496. https://doi.org/10.1007/3-540-30683-8_944