Difference between revisions of "Part:BBa K3416201"

 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
  
 
__NOTOC__
 
__NOTOC__
 +
<partinfo>BBa_K3416201 short</partinfo>
 +
 
=Introduction=
 
=Introduction=
  
Line 8: Line 10:
 
This part was used for the second goal- treatment -  of the project FlavoFlow.
 
This part was used for the second goal- treatment -  of the project FlavoFlow.
 
[[File:T--Vilnius-Lithuania--flavoflowlogo.png|200px|right|FlavoFlow]]
 
[[File:T--Vilnius-Lithuania--flavoflowlogo.png|200px|right|FlavoFlow]]
 
__TOC__
 
  
 
=Biology=
 
=Biology=
Line 16: Line 16:
  
 
AI-2 - interconverting molecules, which are derived from the same precursor and called the „universal“ bacterial signal <ref name= "First"></ref>, <ref>Sun, J., Daniel, R., Wagner-Döbler, I. & Zeng, A.-P. Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. <i>BMC Evol Biol</i> <b>4</b>, 36 (2004).</ref>, <ref>Xavier, K. B. & Bassler, B. L. Interference with AI-2-mediated bacterial cell-cell communication. <i>Nature</i> <b>437</b>, 750–753 (2005).</ref>. AI-2 controls the expression of LuxS regulated transporter, which is responsible for incorporation, phosphorylating, and processing of the AI-2 signal. The lsr transporter has genes, which expression is regulated by AI-2. LsrR is a repressor of the lsr operon. The AI-2, phosphorylated by lsrK, leads to derepression of lsr operon <ref>Pei, D. & Zhu, J. Mechanism of action of S-ribosylhomocysteinase (LuxS). <i>Current Opinion in Chemical Biology</i> <b>8</b>, 492–497 (2004).</ref>.
 
AI-2 - interconverting molecules, which are derived from the same precursor and called the „universal“ bacterial signal <ref name= "First"></ref>, <ref>Sun, J., Daniel, R., Wagner-Döbler, I. & Zeng, A.-P. Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. <i>BMC Evol Biol</i> <b>4</b>, 36 (2004).</ref>, <ref>Xavier, K. B. & Bassler, B. L. Interference with AI-2-mediated bacterial cell-cell communication. <i>Nature</i> <b>437</b>, 750–753 (2005).</ref>. AI-2 controls the expression of LuxS regulated transporter, which is responsible for incorporation, phosphorylating, and processing of the AI-2 signal. The lsr transporter has genes, which expression is regulated by AI-2. LsrR is a repressor of the lsr operon. The AI-2, phosphorylated by lsrK, leads to derepression of lsr operon <ref>Pei, D. & Zhu, J. Mechanism of action of S-ribosylhomocysteinase (LuxS). <i>Current Opinion in Chemical Biology</i> <b>8</b>, 492–497 (2004).</ref>.
 
===Description of EP01rec===
 
''lsrACDBFGE'' is an operon that regulates the genes&apos; expression involved in AI-2 uptake and degradation. Autoinducer 2 (AI-2) is phosphorylated by LsrK, kinase, to phospho-AI-2. The phospho-AI-2 de-represses the ''lsrACDBFGE'' operon‘s repressor LsrR resulting in the induction of the genes <ref>Hauk, P. <i>et al.</i> Insightful directed evolution of <i>Escherichia coli</i> quorum sensing promoter region of the lsrACDBFG operon: a tool for synthetic biology systems and protein expression. <i>Nucleic Acids Res</i> gkw981 (2016) doi:10.1093/nar/gkw981.</ref>.  Hauk and her colleagues created promoters library from ''lsrACDBFG'' operon region. They have achieved two lsrACDBFG mutants, '''EP01rec''' and EP14rec, which has the same as WT function and successfully evolved <ref>Tsao, C.-Y., Hooshangi, S., Wu, H.-C., Valdes, J. J. & Bentley, W. E. Autonomous induction of recombinant proteins by minimally rewiring native quorum sensing regulon of <i>E. coli</i>. <i>Metabolic Engineering</i> <b>12</b>, 291–297 (2010).</ref>.
 
 
==Results==
 
 
The EP01r is expected to be a stronger promoter than <i>lsrACDBFG</i>, however, after EP01 promoter strength measurements there was seen that EP01 promoter is weaker than <i>lsrACDBFG</i>.
 
 
{| align=left
 
|-
 
|
 
[[File:T--Vilnius-Lithuania--ep01 sfGFP.png|thumb|left|<b>Figure 1. </b>  EP01r  promoter strength measurement inducing with AI-2. From left to right: ‘+’- a positive control (J23117-sfGFP), without AI-2, 12μM, 18μM, 24μM of AI-2.]]
 
|-
 
|
 
[[File:T--Vilnius-Lithuania--LsrACDBFG lineplot.png|thumb|left|<b>Figure 2. </b> lsrACDFBG promoter strength measurement inducing by AI-2 changes over time. The concentrations varied from 0μM to 24μM.]]
 
|}
 
  
 
<!-- -->
 
<!-- -->

Latest revision as of 17:51, 17 December 2020


Kill-Switch inducable with AI-2

Introduction

FlavoFlow

Vilnius-Lithuania iGEM 2020 project FlavoFlowincludes three goals towards looking for Flavobacterium disease-related problems’ solutions. The project includes creating a rapid detection kit, based on HDA and LFA, developing an implement for treating a disease, and introducing the foundation of edible vaccines. This part was used for the second goal- treatment - of the project FlavoFlow.

Biology

Quorum sensing (QS) is a communication system, which controls gene expression in response to population density, between bacteria. There are two QS systems: the first one, based on AI-1 or acyl-homoserine lactone (AHL), and the second – autoinducer 2 [1].

AI-2 - interconverting molecules, which are derived from the same precursor and called the „universal“ bacterial signal [1], [2], [3]. AI-2 controls the expression of LuxS regulated transporter, which is responsible for incorporation, phosphorylating, and processing of the AI-2 signal. The lsr transporter has genes, which expression is regulated by AI-2. LsrR is a repressor of the lsr operon. The AI-2, phosphorylated by lsrK, leads to derepression of lsr operon [4].

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 642
    Illegal NheI site found at 665
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 743
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


References

  1. 1.0 1.1 Stephens, K. & Bentley, W. E. Synthetic Biology for Manipulating Quorum Sensing in Microbial Consortia. Trends in Microbiology 28, 633–643 (2020).
  2. Sun, J., Daniel, R., Wagner-Döbler, I. & Zeng, A.-P. Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol Biol 4, 36 (2004).
  3. Xavier, K. B. & Bassler, B. L. Interference with AI-2-mediated bacterial cell-cell communication. Nature 437, 750–753 (2005).
  4. Pei, D. & Zhu, J. Mechanism of action of S-ribosylhomocysteinase (LuxS). Current Opinion in Chemical Biology 8, 492–497 (2004).