Difference between revisions of "Part:BBa K3520017"

 
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
 
__NOTOC__
 
__NOTOC__
<partinfo>BBa_K3520017 short</partinfo>
 
  
a
+
<partinfo>BBa_K3520031 short</partinfo>
 +
<br><br>
 +
 
 +
<partinfo>BBa_K3520031 SequenceAndFeatures</partinfo>
 +
<br><br>
 +
 
 +
This composite part is assembled with TYPEIIS Assembly and it consists of the following subparts:<br/><br/>
 +
<b>Promoter ompA</b> + <b>RBS for Flavobacteriia</b> + <b>Signal Peptide OPH</b> + <b>Codon optimised Reflectin</b> + <b>Double Terminator</b>
 +
 
 +
 
 +
==iGEM KU Istanbul 2020==
  
<!-- Add more about the biology of this part here
+
This part was designed during the Partnership of iGEM Athens 2020 and iGEM KU Istanbul 2020.
===Usage and Biology===
+
The latter team is creating a communication scheme between humans and biological cells by morphing cells into lasers. With this technology, they will be able to detect changes inside and around cells and tissues. These cell lasers can be employed in diagnostics and therapeutic purposes alongside as a high throughput method in basic research.
 +
<br>
  
<!-- -->
+
==iGEM Athens 2020==
<span class='h3bb'>Sequence and Features</span>
+
<partinfo>BBa_K3520017 SequenceAndFeatures</partinfo>
+
  
 +
iGEM Athens 2020 team during the project MORPHÆ works with Flavobacteriia to produce a non-cellular structurally coloured biomaterial which will require the secretion of a biomolecule that Flavobacteriia do not normally secrete. Our hypothesis is that the formed matrix will have a structure similar to that of the biofilm and thus, it will provide the material with macroscopically the same colouration properties as the biofilm.<br /><br />
  
<!-- Uncomment this to enable Functional Parameter display
+
So these two teams above, collaborated in a creative way and iGEM Athens designed a cloning experiment in which Flavobacteriia will express reflectin with a signal peptide which will translocate it to the outer membrane and GFP superfolde. As a result, the biolaser designed by iGEM KU Istanbul will be able to track genetically modified Flavobacteriia.
===Functional Parameters===
+
<partinfo>BBa_K3520017 parameters</partinfo>
+
<!-- -->
+

Latest revision as of 02:44, 28 October 2020


bcsA-Bacterial Cellulose Synthase A


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]



This composite part is assembled with TYPEIIS Assembly and it consists of the following subparts:

Promoter ompA + RBS for Flavobacteriia + Signal Peptide OPH + Codon optimised Reflectin + Double Terminator


iGEM KU Istanbul 2020

This part was designed during the Partnership of iGEM Athens 2020 and iGEM KU Istanbul 2020. The latter team is creating a communication scheme between humans and biological cells by morphing cells into lasers. With this technology, they will be able to detect changes inside and around cells and tissues. These cell lasers can be employed in diagnostics and therapeutic purposes alongside as a high throughput method in basic research.

iGEM Athens 2020

iGEM Athens 2020 team during the project MORPHÆ works with Flavobacteriia to produce a non-cellular structurally coloured biomaterial which will require the secretion of a biomolecule that Flavobacteriia do not normally secrete. Our hypothesis is that the formed matrix will have a structure similar to that of the biofilm and thus, it will provide the material with macroscopically the same colouration properties as the biofilm.

So these two teams above, collaborated in a creative way and iGEM Athens designed a cloning experiment in which Flavobacteriia will express reflectin with a signal peptide which will translocate it to the outer membrane and GFP superfolde. As a result, the biolaser designed by iGEM KU Istanbul will be able to track genetically modified Flavobacteriia.