Difference between revisions of "Part:BBa K3370001:Design"

(Design Notes)
(Source)
 
(3 intermediate revisions by 2 users not shown)
Line 9: Line 9:
  
 
===Source===
 
===Source===
 
+
Originally derived from <i>Gloeobacter violaceus</i> but codon harmonized for <i>E. coli</i>. [Nakamura et al, 2003, "Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids"].
123
+
  
 
===References===
 
===References===
 +
<ol>
 +
                        <li>Kim, H.-J., et al. (2012). "An engineered Escherichia coli having a high intracellular level
 +
                            of ATP and enhanced recombinant protein production." Applied microbiology and biotechnology
 +
                            94(4): 1079-1086</li>
 +
                        <li>Schlegel, S., et al. (2012). "Optimizing membrane protein overexpression in the Escherichia
 +
                            coli strain Lemo21 (DE3)." Journal of molecular biology 423(4): 648-659.</li>
 +
                        <li>Chen, L.-C., et al. (2020). "Improving the reproducibility, accuracy, and stability of an
 +
                            electrochemical biosensor platform for point-of-care use." Biosensors and Bioelectronics
 +
                            155: 112111.</li>
 +
                        <li>Na, Y.-A., et al. (2015). "Growth retardation of Escherichia coli by artificial increase of
 +
                            intracellular ATP." Journal of industrial microbiology & biotechnology 42(6): 915-924.</li>
 +
                        <li>Kim, H. A., et al. (2017). "An evolutionary optimization of a rhodopsin-based phototrophic
 +
                            metabolism in Escherichia coli." Microbial cell factories 16(1): 111</li>
 +
                        <li>Walter, J. M., et al. (2007). "Light-powering Escherichia coli with proteorhodopsin."
 +
                            Proceedings of the National Academy of Sciences 104(7): 2408-2412.</li>
 +
<li>Takefumi, O., et al. (2019). “X-ray Crystallographic Structure and Oligomerization of Gloeobacter Rhodopsin”</li>
 +
                        <li>GL Rosano, C., et al. (2014) “Recombinant protein expression in Escherichia coli: advances and challenges”</li>
 +
                        <li>Xiaoying, C., et al. (2013)“Fusion Protein Linkers: Property, Design and Functionality”</li>
 +
                        <li>Waldo, B. , et al. (1999) “Rapid protein-folding assay using green fluorescent protein”</li>
 +
                        <li>Que, J. , et al. (2019) “Functional Expression of Gloeobacter Rhodopsin in PSI-Less Synechocystis sp. PCC6803”</li>
 +
                        <li>Evelina.,A.,et al.(2008)”Heterologous Protein Expression Is Enhanced by Harmonizing the Codon Usage Frequencies of the Target Gene with those of the Expression Host”</li>
 +
                    </ol>

Latest revision as of 17:53, 27 October 2020


Harmonized Gloeobacter rhodopsin (GR) with linker and GFP


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 609
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 1571


Design Notes

Source

Originally derived from Gloeobacter violaceus but codon harmonized for E. coli. [Nakamura et al, 2003, "Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids"].

References

  1. Kim, H.-J., et al. (2012). "An engineered Escherichia coli having a high intracellular level of ATP and enhanced recombinant protein production." Applied microbiology and biotechnology 94(4): 1079-1086
  2. Schlegel, S., et al. (2012). "Optimizing membrane protein overexpression in the Escherichia coli strain Lemo21 (DE3)." Journal of molecular biology 423(4): 648-659.
  3. Chen, L.-C., et al. (2020). "Improving the reproducibility, accuracy, and stability of an electrochemical biosensor platform for point-of-care use." Biosensors and Bioelectronics 155: 112111.
  4. Na, Y.-A., et al. (2015). "Growth retardation of Escherichia coli by artificial increase of intracellular ATP." Journal of industrial microbiology & biotechnology 42(6): 915-924.
  5. Kim, H. A., et al. (2017). "An evolutionary optimization of a rhodopsin-based phototrophic metabolism in Escherichia coli." Microbial cell factories 16(1): 111
  6. Walter, J. M., et al. (2007). "Light-powering Escherichia coli with proteorhodopsin." Proceedings of the National Academy of Sciences 104(7): 2408-2412.
  7. Takefumi, O., et al. (2019). “X-ray Crystallographic Structure and Oligomerization of Gloeobacter Rhodopsin”
  8. GL Rosano, C., et al. (2014) “Recombinant protein expression in Escherichia coli: advances and challenges”
  9. Xiaoying, C., et al. (2013)“Fusion Protein Linkers: Property, Design and Functionality”
  10. Waldo, B. , et al. (1999) “Rapid protein-folding assay using green fluorescent protein”
  11. Que, J. , et al. (2019) “Functional Expression of Gloeobacter Rhodopsin in PSI-Less Synechocystis sp. PCC6803”
  12. Evelina.,A.,et al.(2008)”Heterologous Protein Expression Is Enhanced by Harmonizing the Codon Usage Frequencies of the Target Gene with those of the Expression Host”