Difference between revisions of "Part:BBa K3610014"

Line 7: Line 7:
 
===Usage and Biology===
 
===Usage and Biology===
 
NanoLuc is a small, bright and stable luciferase from O. gracilirostris and has been proven to be an efficient reporter protein since its introduction by Promega. One way to use the NanoLuc luciferase is in a protein-fragement complementation assay (PCA) to visualize protein-protein or protein-ligand interaction.
 
NanoLuc is a small, bright and stable luciferase from O. gracilirostris and has been proven to be an efficient reporter protein since its introduction by Promega. One way to use the NanoLuc luciferase is in a protein-fragement complementation assay (PCA) to visualize protein-protein or protein-ligand interaction.
The protein-protein interaction is observed by fusing spli-reporter proteins, like the LargeBit and the SmallBit from NanoLuc, to the proteins of interest. Interaction of the two proteins will associate the reporter fragments and lead to a reconstitution of the full length and fully functional NanoLuc protein.  
+
The protein-protein interaction is observed by fusing spli-reporter proteins, like the LargeBit and the SmallBiT from NanoLuc, to the proteins of interest. Interaction of the two proteins will associate the reporter fragments and lead to a reconstitution of the full length and fully functional NanoLuc protein.  
  
 
To enhance translation, we codon optimized this part for the expression in S. cerevisiae as codon bias has shown to influence mRNA stability and translational efficiacy.
 
To enhance translation, we codon optimized this part for the expression in S. cerevisiae as codon bias has shown to influence mRNA stability and translational efficiacy.
  
For our project we use this part for better characterization of the split NanuLuc system by making experiments with FRB and FRKP.
+
We characterised this part by attaching it to the FKPB12 protein, which dimerises with FRB, to which we attached SmallBiT from the registry. Upon exposure to the antibiotic Rapamycin, FKBP12 and FRB dimerise, bringing the two halves of the NanoBiT system together, reconstituting the functionality of NanoLuc which can be measured by means of a chemiluminescence assay.
 
We further used it for our biosensing system which relies on the dimerization of plant pathogen recognition receptors (PRRs). The general idea is that a microbe assiciated molecular pattern (MAMP), like the epitope flg22 of flagellin, binds to a cell surface receptor, which drives the interaction of the receptor with a coreceptor. The split luciferase proteins are fused to the N-terminal intracellular domains of the receptor protein.
 
We further used it for our biosensing system which relies on the dimerization of plant pathogen recognition receptors (PRRs). The general idea is that a microbe assiciated molecular pattern (MAMP), like the epitope flg22 of flagellin, binds to a cell surface receptor, which drives the interaction of the receptor with a coreceptor. The split luciferase proteins are fused to the N-terminal intracellular domains of the receptor protein.
  

Revision as of 23:21, 26 October 2020


LargeBit NanoLuc - codon optimized for S. cerevisiae

This part is a modified version of Part:BBa_K3168002. It has been codon optimized for the expression in S. cerevisiae.

Usage and Biology

NanoLuc is a small, bright and stable luciferase from O. gracilirostris and has been proven to be an efficient reporter protein since its introduction by Promega. One way to use the NanoLuc luciferase is in a protein-fragement complementation assay (PCA) to visualize protein-protein or protein-ligand interaction. The protein-protein interaction is observed by fusing spli-reporter proteins, like the LargeBit and the SmallBiT from NanoLuc, to the proteins of interest. Interaction of the two proteins will associate the reporter fragments and lead to a reconstitution of the full length and fully functional NanoLuc protein.

To enhance translation, we codon optimized this part for the expression in S. cerevisiae as codon bias has shown to influence mRNA stability and translational efficiacy.

We characterised this part by attaching it to the FKPB12 protein, which dimerises with FRB, to which we attached SmallBiT from the registry. Upon exposure to the antibiotic Rapamycin, FKBP12 and FRB dimerise, bringing the two halves of the NanoBiT system together, reconstituting the functionality of NanoLuc which can be measured by means of a chemiluminescence assay. We further used it for our biosensing system which relies on the dimerization of plant pathogen recognition receptors (PRRs). The general idea is that a microbe assiciated molecular pattern (MAMP), like the epitope flg22 of flagellin, binds to a cell surface receptor, which drives the interaction of the receptor with a coreceptor. The split luciferase proteins are fused to the N-terminal intracellular domains of the receptor protein.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 139
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]