Difference between revisions of "Part:BBa K1742007"

 
(MIT MAHE 2020)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K1742007 short</partinfo>
 
<partinfo>BBa_K1742007 short</partinfo>
  
Lactotransferrin is a major iron-binding and multifunctional protein found in exocrine fluids such as breast milk and mucosal secretions. Has antimicrobial activity, which depends on the extracellular cation concentration. Antimicrobial properties include bacteriostasis, which is related to its ability to sequester free iron and thus inhibit microbial growth, as well as direct bactericidal properties leading to the release of lipopolysaccharides from the bacterial outer membrane. Can also prevent bacterial biofilm development in P.aeruginosa infection. Has weak antifungal activity against C.albicans. Has anabolic, differentiating and anti-apoptotic effects on osteoblasts and can also inhibit osteoclastogenesis, possibly playing a role in the regulation of bone growth. Promotes binding of species C adenoviruses to epithelial cells, promoting adenovirus infection. Can inhibit papillomavirus infections. Stimulates the TLR4 signaling pathway leading to NF-kappa-B activation and subsequent pro-inflammatory cytokine production while also interfering with the lipopolysaccharide (LPS)-stimulated TLR4 signaling. Inhibits neutrophil granulocyte migration to sites of apoptosis, when secreted by apoptotic cells. Stimulates VEGFA-mediated endothelial cell migration and proliferation. Binds heparin, chondroitin sulfate and possibly other glycosaminoglycans (GAGs). Also binds specifically to pneumococcal surface protein A (pspA), the lipid A portion of bacterial lipopolysaccharide (LPS), lysozyme and DNA.
+
Natural response to infection in the lower respiratory tract depends mainly in the neutrophilic granulocyte which secret several products in order to fight infection. One of these products is lactoferrin, a glicosilated protein with two homologous domains able to interact with iron ions. It is the chelating property the one which gives this protein their bacteriostatic activity [1]. The bactericidal activity resides in the N-lobe of the protein, it acts agains E.coli or V.cholerae among others. Oral administrationof lactoferrin has been prove to has antimicrobial but also antiviral activity in animals models [2] increasing the levels of leukocytes and cytokines as interferon gamma, interleukin 12 and 18. It also stimulates the activity of macrophages, so lactoferrin plays an important role in pathogen eradication and homeostasis maintenance in episodes of infection.
Lactoferricin binds to the bacterial surface and is crucial for the bactericidal functions. Has some antiviral activity against papillomavirus infection. N-terminal region shows strong antifungal activity against C.albicans. Contains two BBXB heparin-binding consensus sequences that appear to form the predominate functional GAG-binding site.
+
 
 +
Pneumonia major cause is the infection by Streptococcus pneumoniae, causing also meningitis, septicemia and otitis media [3]. Mirza Shaper et al, 2004[4], observed that lactoferrin apoprotein (without iron ions) has bactericidal activity. They also confirmed that this activity is maintained by just the first 11 amino acids of the N-terminous domain.  
 +
 
 +
==MIT_MAHE 2020==
 +
'''Summary'''
 +
 
 +
Natural response to infection in the lower respiratory tract depends mainly in the neutrophilic granulocyte which secret several products in order to fight infection. One of these products is lactoferrin, a glicosilated protein with two homologous domains able to interact with iron ions. It is the chelating property the one which gives this protein their bacteriostatic activity. Oral administrationof lactoferrin has been prove to has antimicrobial but also antiviral activity in animals models increasing the levels of leukocytes and cytokines as interferon gamma, interleukin 12 and 18. It also stimulates the activity of macrophages, so lactoferrin plays an important role in pathogen eradication and homeostasis maintenance in episodes of infection.
 +
 
 +
==References==
 +
 
 +
1. Otto BR, Verweij-van Vaught AM, MacLaren DM (1992). Transferrins and Heme-Compounds as Iron Sources for Pathogenic Bacteria. Critical Reviews in Microbiology, 18(3): 217-233
 +
 
 +
2. Teraguchi S, Wakabayashi H, Kuwata H, Yamauchi K, Tamura Y (2004). Protection against infections by oral lactoferrin: Evaluation in animal models. Biometals: an international journal on the role of metal ions in biology, biochemistry and medicine, 17(3): 231-234
 +
 
 +
3. Butler JC, Schuchat A (1999) Epidemology of pneumococcal infections in the elderly, Drugs & aging, 15 Suppl 1:11-9
 +
 
 +
4. Mirza S, Hollingshead SK, Benjamin WH, Briles DE (2004). PspA protects Streptococcus pneumonia from Killing by Apolactoferrin, and Antibody to PspA Enhances Killing of Pneumococci by Apolactoferrin. Infection and Immunity, 72(12):7379
 +
 
 +
5. Shaper, M., Hollingshead, S. K., Benjamin, W. H., Jr, & Briles, D. E. (2004). PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin [corrected]. Infection and immunity, 72(9), 5031–5040. https://doi.org/10.1128/IAI.72.9.5031-5040.2004
  
 
<!-- Add more about the biology of this part here
 
<!-- Add more about the biology of this part here

Latest revision as of 17:48, 23 October 2020

Homo sapiens LTF Lactoferrin

Natural response to infection in the lower respiratory tract depends mainly in the neutrophilic granulocyte which secret several products in order to fight infection. One of these products is lactoferrin, a glicosilated protein with two homologous domains able to interact with iron ions. It is the chelating property the one which gives this protein their bacteriostatic activity [1]. The bactericidal activity resides in the N-lobe of the protein, it acts agains E.coli or V.cholerae among others. Oral administrationof lactoferrin has been prove to has antimicrobial but also antiviral activity in animals models [2] increasing the levels of leukocytes and cytokines as interferon gamma, interleukin 12 and 18. It also stimulates the activity of macrophages, so lactoferrin plays an important role in pathogen eradication and homeostasis maintenance in episodes of infection.

Pneumonia major cause is the infection by Streptococcus pneumoniae, causing also meningitis, septicemia and otitis media [3]. Mirza Shaper et al, 2004[4], observed that lactoferrin apoprotein (without iron ions) has bactericidal activity. They also confirmed that this activity is maintained by just the first 11 amino acids of the N-terminous domain.

MIT_MAHE 2020

Summary

Natural response to infection in the lower respiratory tract depends mainly in the neutrophilic granulocyte which secret several products in order to fight infection. One of these products is lactoferrin, a glicosilated protein with two homologous domains able to interact with iron ions. It is the chelating property the one which gives this protein their bacteriostatic activity. Oral administrationof lactoferrin has been prove to has antimicrobial but also antiviral activity in animals models increasing the levels of leukocytes and cytokines as interferon gamma, interleukin 12 and 18. It also stimulates the activity of macrophages, so lactoferrin plays an important role in pathogen eradication and homeostasis maintenance in episodes of infection.

References

1. Otto BR, Verweij-van Vaught AM, MacLaren DM (1992). Transferrins and Heme-Compounds as Iron Sources for Pathogenic Bacteria. Critical Reviews in Microbiology, 18(3): 217-233

2. Teraguchi S, Wakabayashi H, Kuwata H, Yamauchi K, Tamura Y (2004). Protection against infections by oral lactoferrin: Evaluation in animal models. Biometals: an international journal on the role of metal ions in biology, biochemistry and medicine, 17(3): 231-234

3. Butler JC, Schuchat A (1999) Epidemology of pneumococcal infections in the elderly, Drugs & aging, 15 Suppl 1:11-9

4. Mirza S, Hollingshead SK, Benjamin WH, Briles DE (2004). PspA protects Streptococcus pneumonia from Killing by Apolactoferrin, and Antibody to PspA Enhances Killing of Pneumococci by Apolactoferrin. Infection and Immunity, 72(12):7379

5. Shaper, M., Hollingshead, S. K., Benjamin, W. H., Jr, & Briles, D. E. (2004). PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin [corrected]. Infection and immunity, 72(9), 5031–5040. https://doi.org/10.1128/IAI.72.9.5031-5040.2004

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 891
    Illegal BglII site found at 1501
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal SapI site found at 1428