Difference between revisions of "Part:BBa K3338001"

 
Line 1: Line 1:
  
 +
__NOTOC__
 +
<partinfo>BBa_K3338001 short</partinfo>
 +
 +
Gaussia luciferase from the copepod Gaussia princeps has a molecular weight of 19.9 kDa and catalyzes the oxidative decarboxylation of coelenterazine to produce coelenteramide and light and therewith generates a bioluminescent signal (Verhaegent and Christopoulos 2002). It is a naturally secreted protein with a N-terminal signal peptide making it well-suited as a reporter gene for many cell culture applications (Verhaegent and Christopoulos 2002, Tannous et al. 2005). In this study we used a human codon optimized form previously described in Tannous et al. In the original study it was shown that hGLuc generates over 1000-fold higher bioluminescent signal intensities than humanized forms of firefly luciferase and Renilla luciferase when expressed in mammalian cells (Tannous et al. 2005). Apart from cell culture experiments hGLuc was also utilized for in vivo studies in mice where it was used to localize and measure the expansion of transplanted hGLuc expressing cells using bioluminescence imaging (Tannous et al. 2005). In other studies, hGLuc could be detected in blood and urine samples of transplanted cells making hGLuc very well-suited as a reporter (Tannous 2009).
 +
 +
<!-- Add more about the biology of this part here
 +
===Usage and Biology===
 +
 +
<!-- -->
 +
<span class='h3bb'>Sequence and Features</span>
 +
<partinfo>BBa_K3338001 SequenceAndFeatures</partinfo>
 +
 +
 +
<!-- Uncomment this to enable Functional Parameter display
 +
===Functional Parameters===
 +
<partinfo>BBa_K3338001 parameters</partinfo>
 +
<!-- -->

Revision as of 13:56, 22 October 2020


Human codon optimized Gaussia luciferase hGLuc

Gaussia luciferase from the copepod Gaussia princeps has a molecular weight of 19.9 kDa and catalyzes the oxidative decarboxylation of coelenterazine to produce coelenteramide and light and therewith generates a bioluminescent signal (Verhaegent and Christopoulos 2002). It is a naturally secreted protein with a N-terminal signal peptide making it well-suited as a reporter gene for many cell culture applications (Verhaegent and Christopoulos 2002, Tannous et al. 2005). In this study we used a human codon optimized form previously described in Tannous et al. In the original study it was shown that hGLuc generates over 1000-fold higher bioluminescent signal intensities than humanized forms of firefly luciferase and Renilla luciferase when expressed in mammalian cells (Tannous et al. 2005). Apart from cell culture experiments hGLuc was also utilized for in vivo studies in mice where it was used to localize and measure the expansion of transplanted hGLuc expressing cells using bioluminescence imaging (Tannous et al. 2005). In other studies, hGLuc could be detected in blood and urine samples of transplanted cells making hGLuc very well-suited as a reporter (Tannous 2009).

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]