Difference between revisions of "Part:BBa K3328022:Design"
(2 intermediate revisions by 2 users not shown) | |||
Line 7: | Line 7: | ||
===Design Notes=== | ===Design Notes=== | ||
− | + | AND gate constructed from two input RNAs that bind to yield a complete trigger RNA. When either input RNA is expressed, it is incapable of activating the switch because neither trigger sub-sequence alone can unwind the repressing hairpin. The toehold switch can only be turned on when the two input RNA species hybridize and form a complete trigger sequence. | |
− | + | ||
+ | https://2020.igem.org/wiki/images/thumb/1/1b/T--OUC-China--design_lunbo_and.jpg/799px-T--OUC-China--design_lunbo_and.jpg | ||
===Source=== | ===Source=== | ||
Line 17: | Line 17: | ||
===References=== | ===References=== | ||
+ | Green, A., Kim, J., Ma, D. et al. Complex cellular logic computation using ribocomputing devices. Nature 548, 117–121 (2017). https://doi.org/10.1038/nature23271 |
Latest revision as of 12:50, 22 October 2020
triggers of AND gate
Assembly Compatibility:
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal XhoI site found at 1
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Design Notes
AND gate constructed from two input RNAs that bind to yield a complete trigger RNA. When either input RNA is expressed, it is incapable of activating the switch because neither trigger sub-sequence alone can unwind the repressing hairpin. The toehold switch can only be turned on when the two input RNA species hybridize and form a complete trigger sequence.
Source
synthesize from company
References
Green, A., Kim, J., Ma, D. et al. Complex cellular logic computation using ribocomputing devices. Nature 548, 117–121 (2017). https://doi.org/10.1038/nature23271