Difference between revisions of "Part:BBa K3328051:Design"
(→Design Notes) |
(→References) |
||
Line 15: | Line 15: | ||
===References=== | ===References=== | ||
+ | [1] Green, A. A., Kim, J., Ma, D., Silver, P. A., Collins, J. J., & Yin, P. (2017). Complex cellular logic computation using ribocomputing devices. Nature, 548(7665), 117–121. doi:10.1038/nature23271 | ||
+ | |||
+ | [2] Green, A. A., Silver, P. A., Collins, J. J., and Yin, P. (2014) toehold switches: de-novo-designed regulators of gene expression. Cell 159, 925– 939, DOI: 10.1016/j.cell.2014.10.002 |
Revision as of 16:56, 20 October 2020
triggerA of NIMPLY gate (NIMPLY2)
Assembly Compatibility:
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Design Notes
In the NIMPLY gate, a deactivating RNA (INPUT A) uses direct hybridization or strand displacement to abolish trigger RNA (input B) activity. So when only the correct trigger RNA is expressed, the switch can be turned on.
Source
synthesize from company
References
[1] Green, A. A., Kim, J., Ma, D., Silver, P. A., Collins, J. J., & Yin, P. (2017). Complex cellular logic computation using ribocomputing devices. Nature, 548(7665), 117–121. doi:10.1038/nature23271
[2] Green, A. A., Silver, P. A., Collins, J. J., and Yin, P. (2014) toehold switches: de-novo-designed regulators of gene expression. Cell 159, 925– 939, DOI: 10.1016/j.cell.2014.10.002