Difference between revisions of "Part:BBa K3093012"

(Conclusion)
 
(8 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
 
__NOTOC__
 
__NOTOC__
<partinfo>BBa_K3093011 short</partinfo>
+
<partinfo>BBa_K3093012 short</partinfo>
  
 
The alpha-hemolysin system is one of the best-studied type 1 secretion systems (T1SS) of E. coli. In T1SS the secretion occurs in a single step directly from the cytosol to the extracellular medium. The secretory machinery of the alpha-hemolysin system consists of three proteins: HlyB, an ATP binding cassette; HlyD, a membrane fusion protein; and TolC, an outer membrane protein.The natural substrate HlyA can be secreted because it contains a C-terminal signal and it has been shown that proteins with C-terminally fused HlyA signal sequence can also be recognized by the HlyB-HlyD-TolC translocator.
 
The alpha-hemolysin system is one of the best-studied type 1 secretion systems (T1SS) of E. coli. In T1SS the secretion occurs in a single step directly from the cytosol to the extracellular medium. The secretory machinery of the alpha-hemolysin system consists of three proteins: HlyB, an ATP binding cassette; HlyD, a membrane fusion protein; and TolC, an outer membrane protein.The natural substrate HlyA can be secreted because it contains a C-terminal signal and it has been shown that proteins with C-terminally fused HlyA signal sequence can also be recognized by the HlyB-HlyD-TolC translocator.
Line 16: Line 16:
 
Given these defects existing in part BBa_K1166002, we have improved this part by amending 3 different types of alternative linker—flexible linker, rigid linker, and OmpT-cut linker—on the basis of original double-GS linker.
 
Given these defects existing in part BBa_K1166002, we have improved this part by amending 3 different types of alternative linker—flexible linker, rigid linker, and OmpT-cut linker—on the basis of original double-GS linker.
  
===Characterization===
+
===Construction===
The OmpT-cleavable linker BBa_K3093011 contains an Outer Membrane Protease(OmpT) cleavable sequence — ARRA. We designed this linker, because even though the stable linkage between functional domains could provide many advantages such as a prolonged plasma half-life, nevertheless, they also have several potential drawbacks including steric hindrance between functional domains, decreased bioactivity, and altered metabolism of the protein moieties due to the interference between domains.  
+
—The rigid linker BBa_K3093011 could be translated to AEAAAK-EAAAKA, which could form a helical linkage to keep a fixed distance between the target gene and hlyA-tag and to maintain their independent functions.
 
+
<html><img style="width:700px;padding-left:100px;" src="https://static.igem.org/mediawiki/parts/3/3c/T--ECUST_China--flexible-linker-SnapGene.png"> </html>
<html><img style="width:700px;padding-left:100px;" src="https://2019.igem.org/wiki/images/0/03/T--ECUST_China--cleavable-linker-SnapGene.png"> </html>
+
 
+
Under these circumstances, we introduced OmpT cleavable linkers to release free functional domains in vivo. OmpT is a protease localized to the outer membrane and cleaving protein with two consecutive basic amino acids, such as Arg-Arg, Lys-Lys, Arg-Lys. We chose ARRA sequence among the other since it’s the sequence in the standard substrate(Abz-Ala-Arg-Arg-Ala-Dap(dnp)-Gly ) to test OmpT cleavage activity. And the ARRA site is flanked with GS, in order to be exposed to OmpT and retain a certain degree of flexibility.
+
  
 
===Experiment results===
 
===Experiment results===
Line 51: Line 48:
 
===Conclusion===
 
===Conclusion===
  
So we’ve demonstrated the our improved part, BBa_K3093010, OmpT-cleavable linker to be functional, and the flexible BBa_K3093011 and rigid BBa_K3093011 linker were also proved to be not hindering the secretion of fusion protein while offering several alternative options for perspective users who want to express their protein in an secretory form. We are also looking forward to more application of our secretory system package!
+
So we’ve demonstrated the our improved part, BBa_K3093010, HlyA-tag+Secretion system (OmpT-cleavable linker BBa_K3093011) to be functional, and the Rigid linker BBa_K3093012 and the Flexible linker BBa_K3093013 were also proved to be not hindering the secretion of fusion protein while offering several alternative options for perspective users who want to express their protein in an secretory form. We are also looking forward to more application of our secretory system package!
 +
See more info at our [https://2019.igem.org/Team:ECUST_China/Improve# improve-ECUST] homepage.
 +
 
 +
===References===
 +
[1]Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013 Oct;65(10):1357-69. doi: 10.1016/j.addr.2012.09.039. Epub 2012 Sep 29. Review. PubMed PMID: 23026637; PubMed Central PMCID: PMC3726540.
  
 
===Sequence and Features===
 
===Sequence and Features===
Line 57: Line 58:
 
<!-- -->
 
<!-- -->
 
<span class='h3bb'>Sequence and Features</span>
 
<span class='h3bb'>Sequence and Features</span>
<partinfo>BBa_K3093011 SequenceAndFeatures</partinfo>
+
<partinfo>BBa_K3093012 SequenceAndFeatures</partinfo>
  
  
 
<!-- Uncomment this to enable Functional Parameter display  
 
<!-- Uncomment this to enable Functional Parameter display  
 
===Functional Parameters===
 
===Functional Parameters===
<partinfo>BBa_K3093011 parameters</partinfo>
+
<partinfo>BBa_K3093012 parameters</partinfo>
 
<!-- -->
 
<!-- -->

Latest revision as of 15:00, 19 November 2019


HlyA-tag (Rigid linker)

The alpha-hemolysin system is one of the best-studied type 1 secretion systems (T1SS) of E. coli. In T1SS the secretion occurs in a single step directly from the cytosol to the extracellular medium. The secretory machinery of the alpha-hemolysin system consists of three proteins: HlyB, an ATP binding cassette; HlyD, a membrane fusion protein; and TolC, an outer membrane protein.The natural substrate HlyA can be secreted because it contains a C-terminal signal and it has been shown that proteins with C-terminally fused HlyA signal sequence can also be recognized by the HlyB-HlyD-TolC translocator.


Usage and Biology

iGEM13_tecMonterrey team has devised a composite part BBa_K1166002, which combined the hlyA-tag, arabinose-inducible hlyB and hlyD as a whole. Yet the characterization results from iGEM13_tecMonterrey team has shown that,

1).the hlyA-tag could affect the conformation of GFP(the target protein in this case), thus leading to the fluorescence quenching of GFP. This problem implied that, the hlyA-tag might influence the conformation and even function of the target protein when expressed as fusion protein;

2). the hemolysin secretion system is sufficient only to small range of protein.

Given these defects existing in part BBa_K1166002, we have improved this part by amending 3 different types of alternative linker—flexible linker, rigid linker, and OmpT-cut linker—on the basis of original double-GS linker.

Construction

—The rigid linker BBa_K3093011 could be translated to AEAAAK-EAAAKA, which could form a helical linkage to keep a fixed distance between the target gene and hlyA-tag and to maintain their independent functions.

Experiment results

Figure1:clones of DH5α transformants (pIN2 + mRFP + linker + hlyA + araC + pBAD + hlyB + hlyD) of 4 types of linker on LB-kan plates and in liquid M9 media.


All the colonies proved to be positive by colony PCR and first generation sequencing could be easily spotted red on plates and liquid media, directly indicating that the all the linker+hlyA tags were not interfering the emission of fluorescence of mRFP. Compared with using GFP as the secreted target gene, mRFP is apparently more suitable for the fusion of hlyA to testify the secretion efficiency of hemolysin system.

Figure-2:liquid LB media containing positive colonies with(Y) or without(N) arabinose induction after 16 hours. Left three media are pIN2+mRFP, and pIN2(empty vector) as negative control.

Positive transformants with different linker were cultured and induced by arabinose. It’s conspicuous that the arabinose induced E.coli grew much slower, implying expressing HlyB and HlyD was an addictive burden for the engineered cell.

We collected the same weight of E.coli by restricting the value(OD multiple volume) equal to 16.32. And then separate the media and cell by centrifugation. The supernate were concentrated 100 fold and the pellet were resuspended with PBS. Supernate and pellet were both pretreated to prepare protein sample and run SDS-PAGE.

Figure-3:SDS-PAGE of supernatant and pellet of types of linker-transformants.


The SDS-PAGE showed that, the fusion protein—mRFP-hlyA(in the red frame, about 32.6kD)—were all expressed inside the cell and partially successfully secreted to the media. And in the OmpT-cleavable linker case, the mRFP and hlyA-tag were also successfully cleaved, since the cleaved mRFP(in the rgreen frame, about 26.0kD) clearly surpassed the fusion protein on the gel. Although the mRFP-hlyA fusion protein and mRFP were both slightly smaller than expected size, we highly suspected that was because, the pI of the mRFP-hlyA and mRFP were estimated to be 5.12 and 5.07 using an online tool(ExPASy), both lower than pH6.8, which might potentially affect the mobility ratio of these protein in the SDS-PAGE buffer and appeared on a lower molecular weight band on the gel.

Conclusion

So we’ve demonstrated the our improved part, BBa_K3093010, HlyA-tag+Secretion system (OmpT-cleavable linker BBa_K3093011) to be functional, and the Rigid linker BBa_K3093012 and the Flexible linker BBa_K3093013 were also proved to be not hindering the secretion of fusion protein while offering several alternative options for perspective users who want to express their protein in an secretory form. We are also looking forward to more application of our secretory system package! See more info at our improve-ECUST homepage.

References

[1]Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013 Oct;65(10):1357-69. doi: 10.1016/j.addr.2012.09.039. Epub 2012 Sep 29. Review. PubMed PMID: 23026637; PubMed Central PMCID: PMC3726540.

Sequence and Features

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]