Difference between revisions of "Part:BBa K3171171"
(11 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
<partinfo>BBa_K3171171 short</partinfo> | <partinfo>BBa_K3171171 short</partinfo> | ||
− | + | <i>Vibrio natriegens</i> has been reported to have a remarkable doubling time of 9.8 min. As is the case for the better-studied but slower-growing E. coli, <i>V. natriegens</i> increases its number of ribosomes with the growth rate in order to achieve its extraordinarily high rate of protein synthesis. Multiple mechanisms contribute to this high ribosome synthesis efficiency, including high rRNA gene copy number; strong promoters that contain near-consensus −10, −35, and UP elements; and activation by the transcription factor Fis. In addition, <i>V. natriegens</i> rRNA promoters exhibit the relatively short-lived open-complex characteristic of rRNA promoters in E. coli, potentially contributing to the regulation of these promoters in vivo. The native promoter P1 is constitutive. | |
+ | |||
+ | The gene under the control of this promoter is transcribed constitutively. Fluorescence measurements of the construct in <i>E. coli</i> and <i>V. natriegens</i> reveal a constitutive expression of the reporter mCherry for both organisms [[Part:BBa_K3171172]]. Interestingly our measurements show that the expression levels in E. coli are a lot higher than in <i>V. natriegens</i> as the fold change is 225 for E. coli compared to 3 for <i>V. natriegens</i> (figure 1). | ||
+ | |||
+ | |||
+ | [[File:Screenshot 2019-10-21 at 11.47.50.png|400px|]] | ||
+ | |||
+ | Figure 1: Fluorescence of the reporter mCherry under control of the constitutive P1 promoter in <i>V. natriegens</i> and <i>E. coli</i> in comparison to control without plasmid. | ||
+ | |||
+ | |||
<!-- Add more about the biology of this part here | <!-- Add more about the biology of this part here | ||
− | |||
Latest revision as of 21:56, 21 October 2019
Vibrio natriegens native P1 promoter
Vibrio natriegens has been reported to have a remarkable doubling time of 9.8 min. As is the case for the better-studied but slower-growing E. coli, V. natriegens increases its number of ribosomes with the growth rate in order to achieve its extraordinarily high rate of protein synthesis. Multiple mechanisms contribute to this high ribosome synthesis efficiency, including high rRNA gene copy number; strong promoters that contain near-consensus −10, −35, and UP elements; and activation by the transcription factor Fis. In addition, V. natriegens rRNA promoters exhibit the relatively short-lived open-complex characteristic of rRNA promoters in E. coli, potentially contributing to the regulation of these promoters in vivo. The native promoter P1 is constitutive.
The gene under the control of this promoter is transcribed constitutively. Fluorescence measurements of the construct in E. coli and V. natriegens reveal a constitutive expression of the reporter mCherry for both organisms Part:BBa_K3171172. Interestingly our measurements show that the expression levels in E. coli are a lot higher than in V. natriegens as the fold change is 225 for E. coli compared to 3 for V. natriegens (figure 1).
Figure 1: Fluorescence of the reporter mCherry under control of the constitutive P1 promoter in V. natriegens and E. coli in comparison to control without plasmid.