Difference between revisions of "Part:BBa K3286008:Design"
AlexNiederau (Talk | contribs) (→References) |
AlexNiederau (Talk | contribs) |
||
Line 17: | Line 17: | ||
===References=== | ===References=== | ||
− | <ol><li>Larson, M. H., Gilbert, L. A., Wang, X., Lim, W. A., Weissman, J. S., & Qi, L. S. (2013). CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature | + | <ol> |
+ | <li>Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. (2013). Repurposing CRISPR as an RNA-γuided platform for sequence-specific control of gene expression. Cell, 152(5), 1173–1183. https://doi.org/10.1016/j.cell.2013.02.022 </li> | ||
+ | <li>Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., & Marraffini, L. A. (2013). Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Research, 41(15), 7429–7437. https://doi.org/10.1093/nar/gkt520 </li> | ||
+ | <li>Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., … Zhang, F. (2015). Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell, 163(3), 759–771. https://doi.org/10.1016/j.cell.2015.09.038 </li> | ||
+ | <li>Bondy-Denomy, J. et al. (2013) ‘Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system.’, Nature. England, 493(7432), pp. 429–432. doi: 10.1038/nature11723. </li> | ||
+ | <li>Trasanidou, D., Gerós, A. S., Mohanraju, P., Nieuwenweg, A. C., Nobrega, F. L., & Staals, R. H. J. (2019). Keeping CRISPR in check: diverse mechanisms of phage-encoded anti-crisprs. FEMS Microbiology Letters, 366(9), 98. https://doi.org/10.1093/femsle/fnz098 </li> | ||
+ | <li>Nakamura, M. et al. (2019) ‘Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells’, Nature Communications, 10(1), p. 194. doi: 10.1038/s41467-018-08158-x.</li> | ||
+ | <li>Larson, M. H., Gilbert, L. A., Wang, X., Lim, W. A., Weissman, J. S., & Qi, L. S. (2013). CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 8(11), 2180–2196. https://doi.org/10.1038/nprot.2013.132 </li> | ||
+ | <li>Farasat, I., Kushwaha, M., Collens, J., Easterbrook, M., Guido, M., & Salis, H. M. (2014). Efficient search, mapping, and optimization of multi‐protein genetic systems in diverse bacteria. Molecular systems biology, 10(6). </li> | ||
+ | <li>Ng, C. Y., Farasat, I., Maranas, C. D., & Salis, H. M. (2015). Rational design of a synthetic Entner–Doudoroff pathway for improved and controllable NADPH regeneration. Metabolic engineering, 29, 86-96. </li> |
Latest revision as of 21:17, 21 October 2019
IPTG inducible dCas9 expression module
Assembly Compatibility:
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 1200
- 21INCOMPATIBLE WITH RFC[21]Illegal BamHI site found at 3479
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Design Notes
/
Source
/
References
- Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. (2013). Repurposing CRISPR as an RNA-γuided platform for sequence-specific control of gene expression. Cell, 152(5), 1173–1183. https://doi.org/10.1016/j.cell.2013.02.022
- Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., & Marraffini, L. A. (2013). Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Research, 41(15), 7429–7437. https://doi.org/10.1093/nar/gkt520
- Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., … Zhang, F. (2015). Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell, 163(3), 759–771. https://doi.org/10.1016/j.cell.2015.09.038
- Bondy-Denomy, J. et al. (2013) ‘Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system.’, Nature. England, 493(7432), pp. 429–432. doi: 10.1038/nature11723.
- Trasanidou, D., Gerós, A. S., Mohanraju, P., Nieuwenweg, A. C., Nobrega, F. L., & Staals, R. H. J. (2019). Keeping CRISPR in check: diverse mechanisms of phage-encoded anti-crisprs. FEMS Microbiology Letters, 366(9), 98. https://doi.org/10.1093/femsle/fnz098
- Nakamura, M. et al. (2019) ‘Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells’, Nature Communications, 10(1), p. 194. doi: 10.1038/s41467-018-08158-x.
- Larson, M. H., Gilbert, L. A., Wang, X., Lim, W. A., Weissman, J. S., & Qi, L. S. (2013). CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 8(11), 2180–2196. https://doi.org/10.1038/nprot.2013.132
- Farasat, I., Kushwaha, M., Collens, J., Easterbrook, M., Guido, M., & Salis, H. M. (2014). Efficient search, mapping, and optimization of multi‐protein genetic systems in diverse bacteria. Molecular systems biology, 10(6).
- Ng, C. Y., Farasat, I., Maranas, C. D., & Salis, H. M. (2015). Rational design of a synthetic Entner–Doudoroff pathway for improved and controllable NADPH regeneration. Metabolic engineering, 29, 86-96.