Difference between revisions of "Part:BBa K3187028"

Line 4: Line 4:
 
<html>
 
<html>
 
<div class="container">
 
<div class="container">
  <div class="row">
+
    <div class="row">
    <div class="col mx-2">
+
        <div class="col mx-2">
  
        <h1>Profile</h1>
+
            <h1>Profile</h1>
        <table style=“width:80%“>
+
            <table style=“width:80%“>
        <tr>
+
                <tr>
        <td><b>Name</b></td>
+
                    <td><b>Name</b></td>
        <td>Sortase A7M </td>
+
                    <td>Sortase A7M </td>
        </tr>
+
                </tr>
        <tr>
+
                <tr>
        <td><b>Base pairs</b></td>
+
                    <td><b>Base pairs</b></td>
        <td>450</td>
+
                    <td>450</td>
        </tr>
+
                </tr>
        <tr>
+
                <tr>
        <td><b>Molecular weight</b></td>
+
                    <td><b>Molecular weight</b></td>
        <td>17.85&nbsp;kDa</td>
+
                    <td>17.85&nbsp;kDa</td>
        </tr>
+
                </tr>
        <tr>
+
                <tr>
        <td><b>Origin</b></td>
+
                    <td><b>Origin</b></td>
        <td><i>Staphylococcus aureus</i>, synthetic</td>
+
                    <td><i>Staphylococcus aureus</i>, synthetic</td>
        </tr>
+
                </tr>
        <tr>
+
                <tr>
        <td><b>Properties</b></td>
+
                    <td><b>Properties</b></td>
        <td> Ca<sup>2+</sup>-independent, transpeptidase, linking sorting motif LPXTG to poly-glycine Tag </td>
+
                    <td> Ca<sup>2+</sup>-independent, transpeptidase, linking sorting motif LPXTG to poly-glycine Tag
        </tr>
+
                    </td>
        </table>
+
                </tr>
      <h1>Structure</h1>
+
            </table>
<img class="center"
+
            <h1>Structure</h1>
        src="https://2019.igem.org/wiki/images/1/18/T--TU_Darmstadt--Sortasegif4.gif" style="max-width:50%" />
+
            <img class="center" src="https://2019.igem.org/wiki/images/1/18/T--TU_Darmstadt--Sortasegif4.gif"
        </a>
+
                style="max-width:50%" />
        <div class="caption">
+
          <p>
+
            <b>
+
              Figure 1 :
+
            </b>
+
            3D-Structure of Sortase A7M. To find out more, visit our<a href="https://2019.igem.org/Team:TU_Darmstadt/Model" target="_blank" > modeling page.
+
 
             </a>
 
             </a>
             </p>
+
             <div class="caption">
        </div>
+
                <p>
        <h1>Usage and Biology</h1>
+
                    <b>
 +
                        Figure 1 :
 +
                    </b>
 +
                    3D-Structure of Sortase A7M. To find out more, visit our<a
 +
                        href="https://2019.igem.org/Team:TU_Darmstadt/Model" target="_blank"> modeling page.
 +
                    </a>
 +
                </p>
 +
            </div>
 +
            <h1>Usage and Biology</h1>
  
  
        <h3>Transpeptidase: Sortase</h3>
+
            <h3>Transpeptidase: Sortase</h3>
        <p>Sortases belong to the class of <b>transpeptidases</b> and are mostly found in gram-positive bacteria.
+
            <p>Sortases belong to the class of <b>transpeptidases</b> and are mostly found in gram-positive bacteria.
            The high rate of resistance to several antibiotics targeting gram-positive bacteria is also based on the
+
                The high rate of resistance to several antibiotics targeting gram-positive bacteria is also based on the
            property of this enzyme class. Sortases can <b>non-specifically attach</b> virulence and
+
                property of this enzyme class. Sortases can <b>non-specifically attach</b> virulence and
            adhesion‐associated proteins to the peptidoglycans of the cell-surface.
+
                adhesion‐associated proteins to the peptidoglycans of the cell-surface.
            <br>
+
                <br>
            In general, sortases are divided into six groups (A-F) that have slightly different properties and
+
                In general, sortases are divided into six groups (A-F) that have slightly different properties and
            perform three tasks in cells. Group A and B attach proteins to the cell-surface while Group C and D help
+
                perform three tasks in cells. Group A and B attach proteins to the cell-surface while Group C and D help
            building pilin-like structures. Group E and F are not properly investigated yet which is why their exact
+
                building pilin-like structures. Group E and F are not properly investigated yet which is why their exact
            function is not known.
+
                function is not known.
            For our project we are especially interested in the sortases of the <b>group A</b> since they
+
                For our project we are especially interested in the sortases of the <b>group A</b> since they
            <b>covalently attach various proteins or peptides</b> on the cell membrane as long as their targeting
+
                <b>covalently attach various proteins or peptides</b> on the cell membrane as long as their targeting
            motif is at the C-terminus of the corresponding protein. In comparison to other transpeptidases
+
                motif is at the C-terminus of the corresponding protein. In comparison to other transpeptidases
            Sortase&nbsp;A has the advantage that it is rather stable regarding variations in pH
+
                Sortase&nbsp;A has the advantage that it is rather stable regarding variations in pH
           
+
            Sortase&nbsp;A catalyzes the <b>formation and cleavage of a peptide bond</b> between the <b>C-terminal
+
                LPXTG</b> amino acid motif and an <b>N-terminal poly-glycine</b> motif. The enzyme originates from
+
            <i>Staphylococcus&nbsp;aureus</i> and is able to connect any two proteins as long as they possess those
+
            matching target sequences. In the pentapeptide motif LPXTG, X can be any amino acid except cysteine.
+
            Sortase&nbsp;A is rather promiscuous with regard to the amino acid sequence directly upstream of
+
            this motif, a fact that makes it optimal for labeling applications. Even better, amino acids C-terminal
+
            of the poly-glycine motif are not constrained to a certain sequence.
+
        </p>
+
  
        <h3>Reaction</h3>
+
                Sortase&nbsp;A catalyzes the <b>formation and cleavage of a peptide bond</b> between the <b>C-terminal
        <p>
+
                    LPXTG</b> amino acid motif and an <b>N-terminal poly-glycine</b> motif. The enzyme originates from
            To better understand how the enzymatic reaction works it is necessary to look at the crystal structure
+
                <i>Staphylococcus&nbsp;aureus</i> and is able to connect any two proteins as long as they possess those
            of Sortase&nbsp;A. The enyzme consists of an eight-stranded β‐barrel fold structure. The <b>active
+
                matching target sequences. In the pentapeptide motif LPXTG, X can be any amino acid except cysteine.
                site</b> is hydrophobic and
+
                Sortase&nbsp;A is rather promiscuous with regard to the amino acid sequence directly upstream of
            contains the catalytic cysteine residue <b>Cys184</b> as well as a key histidine residue <b>H120</b>
+
                this motif, a fact that makes it optimal for labeling applications. Even better, amino acids C-terminal
            that can form
+
                of the poly-glycine motif are not constrained to a certain sequence.
            a thiolate-imidazolium with the neighboring cysteine. An additional structural property that also other
+
             </p>
            sortases
+
            show is the calcium binding site formed by the &beta;3/&beta;4 loop. The binding of a calcium ion slows
+
            the motion
+
            of the active site by coordinating to a residue in the &beta;6/&beta;7 loop. This helps binding the
+
            substrate and
+
            increasing the enzymatic activity nearly eightfold. When a substrate gets into the active site, the cysteine
+
            attacks the amide
+
            bond between the threonine and the glycine in the <b>LPXTG motif</b>. After this the protonated
+
            imidazolium serves as an
+
            acid for the departing glycine with unbound NH<sub>2</sub> of the former amide bond while the rest of
+
            the motif is
+
            bound to the cysteine residue. Another glycine nucleophile is then necessary in its deprotonated form to
+
            attack
+
            the thioester and re-establish an amide bond at the LPET-motif. This reaction is dead-ended if the used
+
            nucleophile
+
            is water. Due to the fact
+
            that the
+
            mechanism is based on protonated forms of the catalytic residues the reaction is quite pH-dependent.
+
             Although the
+
            Sortase&nbsp;A in general is relatively stable between pH 3 and 11 the reaction works best around pH
+
            8.
+
        <p>
+
  
             <h3>Sortase variants</h3>
+
             <h3>Reaction</h3>
            <p>Due to the fact that the wildtype Sortase&nbsp;A shows rather slow kinetics, a pentamutant has been
+
                developed (<b>Sortase&nbsp;A5M</b>).
+
                This version of the enzyme carries mutations in P94R/D160N/D165A/K190E/K196T which lead to a
+
                140- fold increase in activity. Thereby, reaction rates are improved even at low temperature,
+
                however, Sortase&nbsp;A5M is still <b>Ca<sup>2+</sup>-dependent</b>. This dependence interferes with
+
                potential <i><b>in&nbsp;vivo</i> usage</b>, as the concentrations of calcium in living cells can
+
                vary considerably. Hence a sortase mutant that acts across high differences in calcium
+
                concentrations or even works completely <b>Ca<sup>2+</sup>-independently</b> would be required for
+
                <i>in&nbsp;vivo</i> applications of sortase. To attain a high yield enzyme which is also
+
                calcium-independent Ca<sup>2+</sup>-independent mutations were combined with the Sortase&nbsp;A5M
+
                resulting in <b>Sortase&nbsp;A7</b> variants such as the <b>Sortase&nbsp;A7M</b>. The newly achieved
+
                calcium-independence of these variants enable sortase applications not only <i>in&nbsp;vitro</i> but
+
                <i>in&nbsp;vivo</i> as well.
+
                </p>
+
 
             <p>
 
             <p>
 +
                To better understand how the enzymatic reaction works it is necessary to look at the crystal structure
 +
                of Sortase&nbsp;A. The enyzme consists of an eight-stranded β‐barrel fold structure. The <b>active
 +
                    site</b> is hydrophobic and
 +
                contains the catalytic cysteine residue <b>Cys184</b> as well as a key histidine residue <b>H120</b>
 +
                that can form
 +
                a thiolate-imidazolium with the neighboring cysteine. An additional structural property that also other
 +
                sortases
 +
                show is the calcium binding site formed by the &beta;3/&beta;4 loop. The binding of a calcium ion slows
 +
                the motion
 +
                of the active site by coordinating to a residue in the &beta;6/&beta;7 loop. This helps binding the
 +
                substrate and
 +
                increasing the enzymatic activity nearly eightfold. When a substrate gets into the active site, the
 +
                cysteine
 +
                attacks the amide
 +
                bond between the threonine and the glycine in the <b>LPXTG motif</b>. After this the protonated
 +
                imidazolium serves as an
 +
                acid for the departing glycine with unbound NH<sub>2</sub> of the former amide bond while the rest of
 +
                the motif is
 +
                bound to the cysteine residue. Another glycine nucleophile is then necessary in its deprotonated form to
 +
                attack
 +
                the thioester and re-establish an amide bond at the LPET-motif. This reaction is dead-ended if the used
 +
                nucleophile
 +
                is water. Due to the fact
 +
                that the
 +
                mechanism is based on protonated forms of the catalytic residues the reaction is quite pH-dependent.
 +
                Although the
 +
                Sortase&nbsp;A in general is relatively stable between pH 3 and 11 the reaction works best around pH
 +
                8.
 +
                <p>
  
 +
                    <h3>Sortase variants</h3>
 +
                    <p>Due to the fact that the wildtype Sortase&nbsp;A shows rather slow kinetics, a pentamutant has
 +
                        been
 +
                        developed (<b>Sortase&nbsp;A5M</b>).
 +
                        This version of the enzyme carries mutations in P94R/D160N/D165A/K190E/K196T which lead to a
 +
                        140- fold increase in activity. Thereby, reaction rates are improved even at low temperature,
 +
                        however, Sortase&nbsp;A5M is still <b>Ca<sup>2+</sup>-dependent</b>. This dependence interferes
 +
                        with
 +
                        potential <i><b>in&nbsp;vivo</i> usage</b>, as the concentrations of calcium in living cells can
 +
                        vary considerably. Hence a sortase mutant that acts across high differences in calcium
 +
                        concentrations or even works completely <b>Ca<sup>2+</sup>-independently</b> would be required
 +
                        for
 +
                        <i>in&nbsp;vivo</i> applications of sortase. To attain a high yield enzyme which is also
 +
                        calcium-independent Ca<sup>2+</sup>-independent mutations were combined with the
 +
                        Sortase&nbsp;A5M
 +
                        resulting in <b>Sortase&nbsp;A7</b> variants such as the <b>Sortase&nbsp;A7M</b>. The newly
 +
                        achieved
 +
                        calcium-independence of these variants enable sortase applications not only <i>in&nbsp;vitro</i>
 +
                        but
 +
                        <i>in&nbsp;vivo</i> as well.
 +
                    </p>
 +
                    <p>
  
                <h3>Sortase A7M</h3>
 
                <p>For our project we chose to work with this optimized <a
 
                        href="https://2019.igem.org/Team:TU_Darmstadt/Project/Sortase"
 
                        target="_blank"><b>Sortase&nbsp;A7M</b></a>. Its size is about 17.85 kDa and it has been
 
                    shown to be stable for several weeks in the fridge at 4&nbsp;°C. It also possesses the same
 
                    properties of pH stability like other sortases
 
                    but comes with the advantage of being <b>calcium independent</b>.
 
                    <!--The variant we use is characterized as a rather promiscuous enzyme which helps us keeping the modularity of our project.-->
 
                        "Sortagging" applications have included the cyclization of proteins and peptides
 
                    , modification and labeling of antibodies and the synthesis of protein conjugates with
 
                    drugs, peptides, peptide nucleic acids and sugars.Moreover it poses a lot of advantages for the <b>binding of two proteins
 
                        <i>in&nbsp;vivo</i></b> since it has relatively small tags which avoids putting too much
 
                    metabolic burden on the cells when expressing the proteins of interest. This also avoids
 
                    disturbing the folding of the proteins of interest and the later biological functions since the
 
                    Sortase&nbsp;A7M is able to work under <b>physiological conditions</b>. Other methods like the intein- based labeling of surfaces require large fusion-proteins
 
                    with the intein domain which puts stress on the living cells and might cause folding and
 
                    solubility issues. Another application for sortase-mediated systems is the anchoring of proteins
 
                    on the cell wall of gram-positive bacteria which can be used for display of heterologous
 
                    proteins. It is also possible to attach non-biological molecules to the respective tag. The
 
                    accessibility and flexibility determine the ability of a sortase enzyme to recognize the sorting
 
                    motif and catalyzing the transacylation.</p>
 
  
                <h1>Methods</h1>
+
                        <h3>Sortase A7M</h3>
                <h3>Cloning</h3>
+
                        <p>For our project we chose to work with this optimized <a
               
+
                                href="https://2019.igem.org/Team:TU_Darmstadt/Project/Sortase"
                <p>The methods used for cloning of the different mutants of the sortase were restriction and
+
                                target="_blank"><b>Sortase&nbsp;A7M</b></a>. Its size is about 17.85 kDa and it has been
                    ligation via <i>NdeI</i> and <i>SalI</i> and Gibson assembly. The Sortase&nbsp;A5M was cloned
+
                            shown to be stable for several weeks in the fridge at 4&nbsp;°C. It also possesses the same
                    into pET24(+) vector via restriction and ligation <i>NdeI</i> and <i>SalI</i> as restriction
+
                            properties of pH stability like other sortases
                    enzymes. The vector posesses a kanamycin resistance and the <i>srta7m</i> is controlled through a T7 promoter,
+
                            but comes with the advantage of being <b>calcium independent</b>.
                    which can be induced with IPTG. Sortase&nbsp;A7M is controlled by the same T7&nbsp;promoter.
+
                            <!--The variant we use is characterized as a rather promiscuous enzyme which helps us keeping the modularity of our project.-->
                    Sortas&nbsp;A, introduced by iGEM Stockholm 2016, was cloned via Gibson assembly into PSB1C3.
+
                            "Sortagging" applications have included the cyclization of proteins and peptides
                    This has a chloramphenicol resistance and is also controlled under a T7&nbsp;promoter. Cloning
+
                            , modification and labeling of antibodies and the synthesis of protein conjugates with
                    of all products was checked via sequencing.
+
                            drugs, peptides, peptide nucleic acids and sugars.Moreover it poses a lot of advantages for
                </p>
+
                            the <b>binding of two proteins
 +
                                <i>in&nbsp;vivo</i></b> since it has relatively small tags which avoids putting too much
 +
                            metabolic burden on the cells when expressing the proteins of interest. This also avoids
 +
                            disturbing the folding of the proteins of interest and the later biological functions since
 +
                            the
 +
                            Sortase&nbsp;A7M is able to work under <b>physiological conditions</b>. Other methods like
 +
                            the intein- based labeling of surfaces require large fusion-proteins
 +
                            with the intein domain which puts stress on the living cells and might cause folding and
 +
                            solubility issues. Another application for sortase-mediated systems is the anchoring of
 +
                            proteins
 +
                            on the cell wall of gram-positive bacteria which can be used for display of heterologous
 +
                            proteins. It is also possible to attach non-biological molecules to the respective tag. The
 +
                            accessibility and flexibility determine the ability of a sortase enzyme to recognize the
 +
                            sorting
 +
                            motif and catalyzing the transacylation.</p>
  
                <h3>Expression and purification</h3>
+
                        <h1>Methods</h1>
                <p>
+
                        <h3>Cloning</h3>
                    After successfully transforming our sortase genes in BL21 cells, we inoculated 100&nbsp;mL
+
                    overnight cultures, with the respective antibiotic. The next day 1&nbsp;L cultures were
+
                    inoculated with the overnight culture to reach OD<sub>600</sub>&nbsp;=&nbsp;0.1. Subsequently
+
                    the cultures were incubated under constant shaking at 37&nbsp;°C until they reached
+
                    OD<sub>600</sub>&nbsp;=&nbsp;0.6. At OD<sub>600</sub>&nbsp;=&nbsp;0.6 the cultures were induced
+
                    with 0.5&nbsp;mL of 1&nbsp;M Isopropyl-β-D-thiogalactopyranosid (IPTG). The gene expression was
+
                    performed at 30&nbsp;°C under constant shaking overnight. After expression of Sortase&nbsp;A7M,
+
                    Sortase&nbsp;A5M, and Sortase&nbsp;A from Stockholm (BBa_K2144008) in BL21 cultures the cells
+
                    were crushed via EmulsiFlex (Avestin) and proteins were purified through affinity chromatography
+
                    via Fast Protein Liquid Chromatography (FPLC) with the ÄKTA pure (GE Healthcare, Illinois, USA).
+
                    His-Tag was used for purification of Sortase&nbsp;A7M and Sortase&nbsp;A (Stockholm) and
+
                    Strep-Tag II was used for purification of Sortase&nbsp;A5M.
+
                </p>
+
  
 +
                        <p>The methods used for cloning of the different mutants of the sortase were restriction and
 +
                            ligation via <i>NdeI</i> and <i>SalI</i> and Gibson assembly. The Sortase&nbsp;A5M was
 +
                            cloned
 +
                            into pET24(+) vector via restriction and ligation <i>NdeI</i> and <i>SalI</i> as restriction
 +
                            enzymes. The vector posesses a kanamycin resistance and the <i>srta7m</i> is controlled
 +
                            through a T7 promoter,
 +
                            which can be induced with IPTG. Sortase&nbsp;A7M is controlled by the same T7&nbsp;promoter.
 +
                            Sortas&nbsp;A, introduced by iGEM Stockholm 2016, was cloned via Gibson assembly into
 +
                            PSB1C3.
 +
                            This has a chloramphenicol resistance and is also controlled under a T7&nbsp;promoter.
 +
                            Cloning
 +
                            of all products was checked via sequencing.
 +
                        </p>
  
                <h3>SDS-Page</h3>
+
                        <h3>Expression and purification</h3>
                <p>To verify the successful production of of Sortase&nbsp;A7M, Sortase&nbsp;A5M, and Sortase&nbsp;A
+
                        <p>
                    SDS-PAGEs were performed. The resulting bands were compared to the molecular weight of the
+
                            After successfully transforming our sortase genes in BL21 cells, we inoculated 100&nbsp;mL
                    different sortase variants.
+
                            overnight cultures, with the respective antibiotic. The next day 1&nbsp;L cultures were
                    Also, SDS-PAGEs were completed to verify enzymatic activity in assays prior to measuring sortase
+
                            inoculated with the overnight culture to reach OD<sub>600</sub>&nbsp;=&nbsp;0.1.
                    properties via Fluorescence Resonance Energy Transfer (FRET).
+
                            Subsequently
                </p>
+
                            the cultures were incubated under constant shaking at 37&nbsp;°C until they reached
 +
                            OD<sub>600</sub>&nbsp;=&nbsp;0.6. At OD<sub>600</sub>&nbsp;=&nbsp;0.6 the cultures were
 +
                            induced
 +
                            with 0.5&nbsp;mL of 1&nbsp;M Isopropyl-β-D-thiogalactopyranosid (IPTG). The gene expression
 +
                            was
 +
                            performed at 30&nbsp;°C under constant shaking overnight. After expression of
 +
                            Sortase&nbsp;A7M,
 +
                            Sortase&nbsp;A5M, and Sortase&nbsp;A from Stockholm (BBa_K2144008) in BL21 cultures the
 +
                            cells
 +
                            were crushed via EmulsiFlex (Avestin) and proteins were purified through affinity
 +
                            chromatography
 +
                            via Fast Protein Liquid Chromatography (FPLC) with the ÄKTA pure (GE Healthcare, Illinois,
 +
                            USA).
 +
                            His-Tag was used for purification of Sortase&nbsp;A7M and Sortase&nbsp;A (Stockholm) and
 +
                            Strep-Tag II was used for purification of Sortase&nbsp;A5M.
 +
                        </p>
  
  
                <h3>Flourescence Resonance Energy Transfer (FRET)</h3>
+
                        <h3>SDS-Page</h3>
                <p>
+
                        <p>To verify the successful production of of Sortase&nbsp;A7M, Sortase&nbsp;A5M, and
                    To determine the kinetics of our transpeptidase variants, FRET assays were performed in 384
+
                            Sortase&nbsp;A
                    well-plates (dark) using a Tecan plate reader. A FRET relies on the phenomenon that an excited
+
                            SDS-PAGEs were performed. The resulting bands were compared to the molecular weight of the
                    fluorophore (donor) transfers energy to another fluorophore (acceptor), thereby exciting it.
+
                            different sortase variants.
                    This process only works if both fluorescent molecules are in close proximity and depends on the
+
                            Also, SDS-PAGEs were completed to verify enzymatic activity in assays prior to measuring
                    FRET-Pair. By transferring the energy from donor to acceptor, the donor's emission is reduced
+
                            sortase
                    and the intensity of the acceptors emission is increased . The efficiency depends on the distance between the fluorophore, the orientation and the
+
                            properties via Fluorescence Resonance Energy Transfer (FRET).
                    spectral characteristics . You can see the principle of FRET in <b>Fig.&nbsp;2</b>.
+
                        </p>
                </p>
+
 
               
+
 
                <img class="img-fluid center"
+
                        <h3>Flourescence Resonance Energy Transfer (FRET)</h3>
                    src="https://2019.igem.org/wiki/images/8/8b/T--TU_Darmstadt--FRET.jpeg" style="max-width:50%" />
+
                    </a>
+
                    <div class="caption">
+
 
                         <p>
 
                         <p>
                             <b>
+
                             To determine the kinetics of our transpeptidase variants, FRET assays were performed in 384
                             Figure 2 :
+
                             well-plates (dark) using a Tecan plate reader. A FRET relies on the phenomenon that an
                             </b>
+
                             excited
                             Jablonski diagram showing the energy transfer between a FRET-pair (design based on Wikipedia).
+
                             fluorophore (donor) transfers energy to another fluorophore (acceptor), thereby exciting it.
 +
                            This process only works if both fluorescent molecules are in close proximity and depends on
 +
                            the
 +
                            FRET-Pair. By transferring the energy from donor to acceptor, the donor's emission is
 +
                            reduced
 +
                            and the intensity of the acceptors emission is increased . The efficiency depends on the
 +
                            distance between the fluorophore, the orientation and the
 +
                            spectral characteristics . You can see the principle of FRET in <b>Fig.&nbsp;2</b>.
 
                         </p>
 
                         </p>
                    </div>
 
  
                <h3>Mass Spectrometry</h3>
+
                        <img class="img-fluid center"
                <p>To estimate the product yield of catalyzed reactions by Sortase A7M we performed mass
+
                            src="https://2019.igem.org/wiki/images/8/8b/T--TU_Darmstadt--FRET.jpeg"
                    spectrometry. The tested molecules can be distinguished between products and educts due to
+
                            style="max-width:50%" />
                    desorption and ionization. Therefore, we used the electrospray ionization (ESI) technique for
+
                        </a>
                    the mass spectrometry. This technique has a low resolution but is a very soft ionization method,
+
                        <div class="caption">
                    which makes it an optimal method for biological molecules.</p>
+
                            <p>
                   
+
                                <b>
                <h3 id="ELISA">Enzyme-linked Immunosorbent Assay (ELISA)</h3>
+
                                    Figure 2 :
                <p>
+
                                </b>
                    The enzyme-linked immunosorbent assay (ELISA) is an analytical assay frequently utilized for
+
                                Jablonski diagram showing the energy transfer between a FRET-pair (design based on
                    immobilization and verification of different macro molecules. Immobilizing the recognition
+
                                Wikipedia).
                    tag of the sortase on a surface allows us to verify the coupling efficiency of Sortase&nbsp;A7M under certain conditions.
+
                            </p>
                    Firstly, we functionalized paper to presenting a poly-G peptide sequence on the surface. Using
+
                        </div>
                    the Sortase&nbsp;A7M, a ZZ-domain carrying a LPETG amino acid sequence is coupled to the short peptide
+
                    sequence of GGGßA. The ZZ-domain itself shows high affinity to the human IgG antibody FC-domain and
+
                    therefore allows the following immobilization of IgG. The secondary antibody is an anti-human IgG, Fab-specific antibody carrying the horseradish
+
                    peroxidase enzyme (HRP). HRP is capable of converting 4-chloro-1-naphthol to benzo-4-chlorocyclohexandienone
+
                    using hydrogen peroxide. This color-reaction allows us to draw a conclusion about the previous ZZ-domain’s
+
                    sortase-mediated coupling efficiency since the turnover of the HRP is directly connected to the ligated ZZ-domains.
+
                </p>
+
  
                <h1>Results</h1>
+
                        <h3>Mass Spectrometry</h3>
                <h2>Characterization of Sortase A7M (and comparison to  <a
+
                        <p>To estimate the product yield of catalyzed reactions by Sortase A7M we performed mass
                    href="https://parts.igem.org/Part:BBa_K3187016"
+
                            spectrometry. The tested molecules can be distinguished between products and educts due to
                    target="_blank">BBa_K3187016</a>)
+
                            desorption and ionization. Therefore, we used the electrospray ionization (ESI) technique
                </h2>
+
                            for
                <h3>How do we measure if our purified sortases are active?</h3>
+
                            the mass spectrometry. This technique has a low resolution but is a very soft ionization
                <p>After purification of the sortases, we first performed SDS-PAGEs to verify that they are pure and
+
                             method,
                    monomeric. You can see in <b>Fig. 3</b> that the purifications were successful. Next, we tested
+
                            which makes it an optimal method for biological molecules.</p>
                    if the purified sortases connect two proteins that carry the important Sortase-recognition tags,
+
                    N-terminal polyG and C-terminal LPETGG. Therefore, we added the sortases to a mix of
+
                    GGGG-mCherry and mCherry-LPETGG. The reactions were performed in different buffers, at different
+
                    enzyme-to-substrate ratios and for different time spans. We performed an SDS-PAGE, and prior to
+
                    Coomassie staining, we recorded fluorescent images of the gel. Thereby, we could identify
+
                    mCherry bands in the gel.
+
                </p>
+
                <img class="center"
+
                    src="https://2019.igem.org/wiki/images/5/59/T--TU_Darmstadt--SDS_Sortase_A7M_Sortase_A5M.png"
+
                    style="max-width:30%" />
+
                </a>
+
                <div class="caption">
+
                    <p>
+
                        <b>
+
                             Figure 3 :
+
                        </b>
+
                        SDS-PAGE of Sortase&nbsp;A7M and Sortase&nbsp;A5M where the bands show up at
+
                        approximately 15&nbsp;kDa. Our estimated size for Sortase&nbsp;A7M was 17.85&nbsp;kDa,
+
                        and for Sortase&nbsp;A5M 18.07&nbsp;kDa. This confirms the result shown on the gel,
+
                        since the band of Sortase&nbsp;A5M is a little higher than the one of Sortase&nbsp;A7M.
+
                    </p>
+
                </div>
+
                <img class="img-fluid center"
+
                    src="https://2019.igem.org/wiki/images/6/67/T--TU_Darmstadt--SDS_buff_fluor_Srt5_7_1%3B3_1%3B10_.png"
+
                    style="max-width:50%" />
+
                </a>
+
  
                <img class="img-fluid center"
+
                        <h3 id="ELISA">Enzyme-linked Immunosorbent Assay (ELISA)</h3>
                    src="https://2019.igem.org/wiki/images/0/0d/T--TU_Darmstadt--SDS_buff_both_Srt5_7_1%3B3_1%3B10_.png"
+
                        <p>
                    style="max-width:50%" />
+
                            The enzyme-linked immunosorbent assay (ELISA) is an analytical assay frequently utilized for
                </a>
+
                             immobilization and verification of different macro molecules. Immobilizing the recognition
                <div class="caption">
+
                             tag of the sortase on a surface allows us to verify the coupling efficiency of
                    <p>
+
                             Sortase&nbsp;A7M under certain conditions.
                        <b>
+
                             Firstly, we functionalized paper to presenting a poly-G peptide sequence on the surface.
                             Figure 4 :
+
                            Using
                        </b>
+
                            the Sortase&nbsp;A7M, a ZZ-domain carrying a LPETG amino acid sequence is coupled to the
                             <b>a)</b> Fluorescence gel of the sortase-reaction of GGGG-mCherry and mCherry-LPETGG
+
                            short peptide
                             mediated by Sortase&nbsp;A7M incubated for 2&nbsp;h and
+
                            sequence of GGGßA. The ZZ-domain itself shows high affinity to the human IgG antibody
                             4&nbsp;h each. Reaction solutions were mixed with different ratios from enzyme to
+
                             FC-domain and
                             substrate concentration(1:3;1:10) and each incubated in two different buffers(Tris-HCl
+
                            therefore allows the following immobilization of IgG. The secondary antibody is an
                             and Ammoniumdicarbonat).
+
                            anti-human IgG, Fab-specific antibody carrying the horseradish
                             Product bands at a height of about 57&nbsp;kDa can be seen in lane 4, 5, 6, 8, 9 (from
+
                             peroxidase enzyme (HRP). HRP is capable of converting 4-chloro-1-naphthol to
                             left to right). The bands below the product at about 38&nbsp;kDa could be semi-denatured
+
                             benzo-4-chlorocyclohexandienone
                             mCherry dimers.<br>
+
                             using hydrogen peroxide. This color-reaction allows us to draw a conclusion about the
                            <b>b)</b> Fluorescence gel on top of the coomassie-stained gel of the sortase-reaction
+
                            previous ZZ-domain’s
                            of GGGG-mCherry and mCherry-LPETGG mediated by Sortase&nbsp;A7M incubated for 2&nbsp;h
+
                             sortase-mediated coupling efficiency since the turnover of the HRP is directly connected to
 +
                            the ligated ZZ-domains.
 +
                        </p>
 +
 
 +
                        <h1>Results</h1>
 +
                        <h2>Characterization of Sortase A7M (and comparison to <a
 +
                                href="https://parts.igem.org/Part:BBa_K3187016" target="_blank">BBa_K3187016</a>)
 +
                        </h2>
 +
                        <h3>How do we measure if our purified sortases are active?</h3>
 +
                        <p>After purification of the sortases, we first performed SDS-PAGEs to verify that they are pure
 
                             and
 
                             and
                             4&nbsp;h each. Reaction solutions were mixed with different ratios from enzyme to
+
                             monomeric. You can see in <b>Fig. 3</b> that the purifications were successful. Next, we
                             substrate concentration(1:3;1:10) and each incubated in two different buffers (Tris-HCl
+
                             tested
                             and Ammoniumdicarbonat).
+
                            if the purified sortases connect two proteins that carry the important Sortase-recognition
                             Product bands at a height of about 57&nbsp;kDa can be seen in lane 4, 5, 6, 8, 9 (from
+
                             tags,
                             left to right). The bands below the product at about 38&nbsp;kDa could be semi-denatured
+
                             N-terminal polyG and C-terminal LPETGG. Therefore, we added the sortases to a mix of
                             mCherry dimers. Additionally, Sortase&nbsp;A7M can be seen at 17&nbsp;kDaA7M.The
+
                            GGGG-mCherry and mCherry-LPETGG. The reactions were performed in different buffers, at
                             unprocessed mCherry monomers can be seen at 28&nbsp;kDa.
+
                             different
                    </p>
+
                            enzyme-to-substrate ratios and for different time spans. We performed an SDS-PAGE, and prior
                    <p>
+
                             to
                         As shown in <b>Fig. 4</b>, under certain conditions, a product band appeared at the expected
+
                            Coomassie staining, we recorded fluorescent images of the gel. Thereby, we could identify
                        size of 57.3&nbsp;kDa (28.5+28.8&nbsp;kDa). From this first activity test, we draw three
+
                             mCherry bands in the gel.
                         conclusions:
+
                        </p>
                    </p>
+
                        <img class="center"
 +
                            src="https://2019.igem.org/wiki/images/5/59/T--TU_Darmstadt--SDS_Sortase_A7M_Sortase_A5M.png"
 +
                            style="max-width:30%" />
 +
                         </a>
 +
                        <div class="caption">
 +
                            <p>
 +
                                <b>
 +
                                    Figure 3 :
 +
                                </b>
 +
                                SDS-PAGE of Sortase&nbsp;A7M and Sortase&nbsp;A5M where the bands show up at
 +
                                approximately 15&nbsp;kDa. Our estimated size for Sortase&nbsp;A7M was 17.85&nbsp;kDa,
 +
                                and for Sortase&nbsp;A5M 18.07&nbsp;kDa. This confirms the result shown on the gel,
 +
                                since the band of Sortase&nbsp;A5M is a little higher than the one of Sortase&nbsp;A7M.
 +
                            </p>
 +
                         </div>
 +
                        <img class="img-fluid center"
 +
                            src="https://2019.igem.org/wiki/images/6/67/T--TU_Darmstadt--SDS_buff_fluor_Srt5_7_1%3B3_1%3B10_.png"
 +
                            style="max-width:50%" />
 +
                        </a>
  
 +
                        <img class="img-fluid center"
 +
                            src="https://2019.igem.org/wiki/images/0/0d/T--TU_Darmstadt--SDS_buff_both_Srt5_7_1%3B3_1%3B10_.png"
 +
                            style="max-width:50%" />
 +
                        </a>
 +
                        <div class="caption">
 +
                            <p>
 +
                                <b>
 +
                                    Figure 4 :
 +
                                </b>
 +
                                <b>a)</b> Fluorescence gel of the sortase-reaction of GGGG-mCherry and mCherry-LPETGG
 +
                                mediated by Sortase&nbsp;A7M incubated for 2&nbsp;h and
 +
                                4&nbsp;h each. Reaction solutions were mixed with different ratios from enzyme to
 +
                                substrate concentration(1:3;1:10) and each incubated in two different buffers(Tris-HCl
 +
                                and Ammoniumdicarbonat).
 +
                                Product bands at a height of about 57&nbsp;kDa can be seen in lane 4, 5, 6, 8, 9 (from
 +
                                left to right). The bands below the product at about 38&nbsp;kDa could be semi-denatured
 +
                                mCherry dimers.<br>
 +
                                <b>b)</b> Fluorescence gel on top of the coomassie-stained gel of the sortase-reaction
 +
                                of GGGG-mCherry and mCherry-LPETGG mediated by Sortase&nbsp;A7M incubated for 2&nbsp;h
 +
                                and
 +
                                4&nbsp;h each. Reaction solutions were mixed with different ratios from enzyme to
 +
                                substrate concentration(1:3;1:10) and each incubated in two different buffers (Tris-HCl
 +
                                and Ammoniumdicarbonat).
 +
                                Product bands at a height of about 57&nbsp;kDa can be seen in lane 4, 5, 6, 8, 9 (from
 +
                                left to right). The bands below the product at about 38&nbsp;kDa could be semi-denatured
 +
                                mCherry dimers. Additionally, Sortase&nbsp;A7M can be seen at 17&nbsp;kDaA7M.The
 +
                                unprocessed mCherry monomers can be seen at 28&nbsp;kDa.
 +
                            </p>
 +
                            <p>
 +
                                As shown in <b>Fig. 4</b>, under certain conditions, a product band appeared at the
 +
                                expected
 +
                                size of 57.3&nbsp;kDa (28.5+28.8&nbsp;kDa). From this first activity test, we draw three
 +
                                conclusions:
 +
                            </p>
  
  
                    <ul>
 
                        <li>
 
  
                             <b>Our purified Sortase A7M is active</b>
+
                             <ul>
 +
                                <li>
  
                        </li>
+
                                    <b>Our purified Sortase A7M is active</b>
                        <li>
+
                            <b>The enzyme-substrate ratio affects the product yield</b>
+
                        </li>
+
                        <li>
+
                            <b>The duration of the reaction affects the product yield</b>
+
                        </li>
+
                    </ul>
+
  
                    <p>
+
                                </li>
                        <br>
+
                                <li>
                        Additionally, TRIS buffer seems to alter the coomassie staining efficiency of Sortase A7M.
+
                                    <b>The enzyme-substrate ratio affects the product yield</b>
                        This endpoint measurement gave us a first impression that our Sortase A7M works nicely. Of
+
                                </li>
                        course, we wanted to further characterize the parameters of the reaction. When we understand
+
                                <li>
                        the Sortase better, modification of our VLPs will become more straightforward.
+
                                    <b>The duration of the reaction affects the product yield</b>
 +
                                </li>
 +
                            </ul>
  
                    </p>
+
                            <p>
                </div>
+
                                <br>
                <h3>How do we measure sortase reaction kinetics</h3>
+
                                Additionally, TRIS buffer seems to alter the coomassie staining efficiency of Sortase
                <p>
+
                                A7M.
                    In the above described assays, we noticed the impact of enzyme-substrate ratio and reaction
+
                                This endpoint measurement gave us a first impression that our Sortase A7M works nicely.
                    duration on the
+
                                Of
                    overall product yield. We thought about how to further measure the kinetics of the sortase
+
                                course, we wanted to further characterize the parameters of the reaction. When we
                    reaction. In the
+
                                understand
                    literature, sortase reaction kinetics are often measured by FRET-assays. Therefore, we designed
+
                                the Sortase better, modification of our VLPs will become more straightforward.
                    a suitable
+
                    FRET-assay. In the
+
                    end, we came
+
                    up with a new FRET pair not described in the literature to date: 5-TAMRA-LPETG and GGGG-sfGFP.
+
                </p>
+
                <h4>Development of a new FRET pair</h4>
+
                <p>
+
                    For characterization of the reaction kinetics of Sortase&nbsp;A7M, Sortase A5M and
+
                    Sortase&nbsp;A, we
+
                    decided to develop a suitable FRET&nbsp;pair.
+
                    In order to find an optimal FRET&nbsp;pair, we first recorded an emission and absorption
+
                    spectrum of
+
                    5-Carboxytetramethylrhodamin-LPETG (TAMRA) and GGGG-mCherry to verify the suitability for the
+
                    FRET&nbsp;effect, checking for a possible overlap between the donor's emission and the
+
                    acceptor's
+
                    extinction.
+
                </p>
+
                <img class="img-fluid center"
+
                    src="https://2019.igem.org/wiki/images/d/d4/T--TU_Darmstadt--TAMRA_mCherry.JPG"
+
                    style="max-width:80%" />
+
                </a>
+
                <div class="caption">
+
                    <p>
+
                        <b>
+
                            Figure 5 :
+
                        </b>
+
                            Design of a FRET-pair of 5-TAMRA-LPETG (TAMRA) and GGGG-mCherry (mCherry). In
+
                            this configuration TAMRA acts as donor and mCherry as acceptor. When the two
+
                            fluorophores are not linked via the substrates of the sortase only TAMRA is being
+
                            excited. After sortase mediated ligation of the two substrates mCherry is the
+
                            fluorophore being excited via the FRET and the emission of mCherry intensifies.
+
                            Meanwhile, the emission of TAMRA decreases.
+
                    </p>
+
                </div>
+
                <p>
+
                    TAMRA is a chemical fluorophore that has an absorbance maximum at 542&nbsp;nm and an emission
+
                    maximum at
+
                    570&nbsp;nm. The
+
                    terminal carboxy
+
                    group of the dye was linked via a lysine linker to the LPETG sequence (<b>see Fig.&nbsp;5</b>).
+
                    mCherry has
+
                    an N-terminal poly-glycine sequence and can therefore be linked to the LPETG motif of TAMRA via
+
                    the
+
                    Sortase&nbsp;A. For a sufficient FRET-effect, it is also necessary that the distance between
+
                    donor and
+
                    acceptor is lower than the Förster radius. The Förster radius describes the distance between two
+
                    fluorophores at which 50&nbsp;% of the energy is transferred.
+
                    <br>
+
                    First, we wanted to identify which concentrations are needed for our experiment, then set up the
+
                    reaction
+
                    and measured fluorescence intensities. Over time, a decline in the emission of TAMRA can be
+
                    observed as
+
                    Sortase&nbsp;A7M/A5M is converting more educts to products.
+
                </p>
+
                <img class="img-fluid center"
+
                    src="https://2019.igem.org/wiki/images/0/06/T--TU_Darmstadt--mCherry_TAMRA_Extinction_Emission.png"
+
                    style="max-width:50%" />
+
                </a>
+
                <div class="caption">
+
                    <p>
+
                        <b>
+
                            Figure 6 :
+
                        </b>
+
                            The graph shows the extinction and emission spectra of TAMRA and mCherry. Due
+
                            to the large overlap of TAMRA emission and mCherry extinction it is possible to perform
+
                            a FRET with this pair of fluorophores. The graph show the relative fluorescence unit
+
                            (RFU[%]) in relation to the extincted/emitted wavelength [nm]. The peaks are normalized
+
                            to 100&nbsp;%.
+
                    </p>
+
                </div>
+
                <p>
+
                    The emission and extinction spectra of TAMRA and mCherry exhibit an overlap of emission of TAMRA
+
                    and
+
                    extinction of mCherry. Based on this output, a FRET-assay for the kinetics of Sortase&nbsp;A7M
+
                    was performed
+
                    to confirm whether the FRET-pair is working.
+
                    As TAMRA is excited with light of a lower wavelength than mCherry, the former serves as FRET
+
                    donor and the
+
                    latter as acceptor. We chose the excitation wavelength at 485&nbsp;nm to prevent unnecessary
+
                    “leak”
+
                    excitation of mCherry.
+
                    Nevertheless, an extinction of mCherry could not be excluded and may have negative effects on
+
                    the visibility
+
                    of the FRET.
+
                </p>
+
                <img class="img-fluid center"
+
                    src="https://2019.igem.org/wiki/images/b/b1/T--TU_Darmstadt--mCherry_TAMRA_Bleaching_Negativecontrol.png"
+
                    style="max-width:50%" />
+
                </a>
+
                <div class="caption">
+
                    <p>
+
                        <b>
+
                            Figure 7 :
+
                        </b>
+
                            Spectrum of the negative control of TAMRA and mCherry,
+
                            without Sortase A7M, over the course of 20 min in 5 min intervals.
+
                            Depicted are the emission wavelengths against the RFU.
+
                    </p>
+
                </div>
+
  
                <img class="img-fluid center"
+
                             </p>
                    src="https://2019.igem.org/wiki/images/f/fd/T--TU_Darmstadt--mCherry_TAMRA_Bleaching_Positive.png"
+
                         </div>
                    style="max-width:50%" />
+
                         <h3>How do we measure sortase reaction kinetics</h3>
                </a>
+
                <div class="caption">
+
                    <p>
+
                        <b>
+
                             Figure 8 :
+
                        </b>
+
                            Spectrum of TAMRA and mCherry, with Sortase&nbsp;A7M, over the course of
+
                            20&nbsp;min in 5&nbsp;min intervals. Depicted are the emission wavelengths against the
+
                            RFU. The sortase-mediated ligation results in a decline of both emission peaks.
+
                    </p>
+
                </div>
+
                <p>
+
                    The analysis of the data shown in <b>Fig.&nbsp;7</b> confirmed the aforementioned
+
                    suspicion that mCherry is also excited at 485&nbsp;nm, which makes differentiation
+
                    of the fluorescence more difficult. Furthermore, <b>Fig.&nbsp;8</b> shows that the
+
                    difference in the decline of TAMRA is not significant. Accordingly, a decline in the
+
                    emission maximum of TAMRA over time is also visible in the negative control. One
+
                    reason might be bleaching of TAMRA through the excitation by the laser.
+
                    Nevertheless, conversion by the Sortase&nbsp;A7M can be observed by comparing the
+
                    results with the negative control.
+
                </p>
+
                <img class="img-fluid center"
+
                    src="https://2019.igem.org/wiki/images/9/92/T--TU_Darmstadt--mCherry_TAMRA_FRET_SortaseA7M.png"
+
                    style="max-width:60%" />
+
                </a>
+
                <div class="caption">
+
                    <p>
+
                         <b>
+
                            Figure 9 :
+
                        </b>
+
                      Sortase reaction in TAMRA mCherry FRET after subtracting the negative control.
+
                            Depicted is the difference in RFU over time [min]. Within the first 20&nbsp;min of the
+
                            substrate conversion is the quickest. At 30&nbsp;min a plateau is reached. After
+
                            60&nbsp;min starts catalyzing the reverse reaction. The mean ΔRFU value was normalized
+
                            to zero for better visualization.
+
                    </p>
+
                </div>
+
                <p>
+
                    To confirm the functionality of the Sortase&nbsp;A7M, another more sufficient FRET-pair was
+
                    developed. The measured absorbance and emission spectra indicated that TAMRA and superfolder
+
                    green fluorescence protein (sfGFP) are a possible FRET-pair. The sfGFP has an N-terminal
+
                    polyglycine sequence and can therefore be linked to TAMRA with the sorting motif, in the same
+
                    way as mCherry was connected. However, the small overlap between the extinction spectra of sfGFP
+
                    and TAMRA could solve the previous “simultaneous excitation” problem we observed for the
+
                    mCherry-TAMRA FRET-pair. Because of the lower excitation maximum of sfGFP compared to TAMRA,
+
                    sfGFP was chosen as donor and TAMRA as acceptor. sfGFP was excited at 465&nbsp;nm to minimize
+
                    the unnecessary leak excitation of sfGFP.
+
                </p>
+
                <img class="img-fluid center"
+
                    src="https://2019.igem.org/wiki/images/9/90/T--TU_Darmstadt--FRET_pair_sfGFP_TAMRA.png"
+
                    style="max-width:60%" />
+
                </a>
+
                <div class="caption">
+
                    <p>
+
                         <b>
+
                            Figure 10 :
+
                        </b>
+
                        The graph shows the extinction and emission spectra of
+
                        TAMRA and mCherry. Due to the large overlap of sfGFP emission and TAMRA
+
                        extinction it is possible to perform a FRET with this pair of fluorophores.
+
                        The graph show the relative fluorescence unit (RFU[%]) in relation to the extincted/emitted
+
                        wavelength [nm]. The peaks are normalized to 100 %.
+
                    </p>
+
                </div>
+
                <img class="img-fluid center"
+
                    src="https://2019.igem.org/wiki/images/c/c0/T--TU_Darmstadt--Tamra_GFP_Johny.jpg"
+
                    style="max-width:80%" />
+
                </a>
+
                <div class="caption">
+
                    <p>
+
                        <b>
+
                            Figure 11 :
+
                        </b>
+
                        Design of a FRET-pair of 5-TAMRA-LPETG (TAMRA) and GGGG-sfGFP (sfGFP). In this
+
                            configuration sfGFP acts as donor and TAMRA as acceptor. When the two fluorophores are
+
                            not linked only sfGFP is being excited. After sortase-mediated ligation of the two
+
                            substrates, TAMRA is the fluorophore being excited via FRET and the emission of TAMRA
+
                            intensifies. Meanwhile, the emission of sfGFP decreases.
+
                    </p>
+
                </div>
+
                <p>
+
                    The transfer of energy from sfGFP to TAMRA can be seen by the decrease in emission of sfGFP and
+
                    increase in emission from TAMRA. Compared to TAMRA as an acceptor, the sfGFP bleaches
+
                    significantly less and is consequently more suitable as a donor for FRET. Furthermore, the afore
+
                    mentioned problem of simultaneous donor and acceptor excitation seems to be solved. It seems
+
                    that we have found a FRET-pair with superior properties.
+
                </p>
+
                <img class="img-fluid center"
+
                    src="https://2019.igem.org/wiki/images/8/85/T--TU_Darmstadt--Sortase_A7M_Proof_N2_Without_Sortase_A7M.png"
+
                    style="max-width:50%" />
+
                </a>
+
                <div class="caption">
+
                    <p>
+
                        <b>
+
                            Figure 12 :
+
                        </b>
+
                        Spectrum of the negative control of TAMRA and sfGFP,
+
                        without Sortase A7M, over the course of 25 min in 5 min intervals.
+
                        Depicted are the emission wavelengths against the RFU.
+
                    </p>
+
                </div>
+
                <img class="img-fluid center"
+
                    src="https://2019.igem.org/wiki/images/0/04/T--TU_Darmstadt--Sortase_A7M_Proof_N2_With_Sortase_A7M.png"
+
                    style="max-width:50%" />
+
                </a>
+
                <div class="caption">
+
                    <p>
+
                        <b>
+
                            Figure 13 :
+
                        </b>
+
                            Spectrum of TAMRA and sfGFP, with Sortase&nbsp;A7M, over the course of
+
                            25&nbsp;min in 5&nbsp;min intervals. Depicted are the emission wavelengths against the
+
                            RFU. The sortase-mediated ligation results in a decline of both emission peaks.
+
                    </p>
+
                </div>
+
                <p>
+
                    Due to the collected data of both FRET-pairs we decided to use the TAMRA-LPETG and GGGG-sfGFP
+
                    FRET-pair for further characterization of our Sortase&nbsp;A variants. Two reasons justify this
+
                    decision:
+
                </p>
+
                <p>
+
                    <ul>
+
                        <li>TAMRA bleaches stronger than sfGFP when excited with a laser.</li>
+
                        <li>The spectral overlap between TAMRA and mCherry disturbs “clean” energy transfer, thus
+
                            the FRET-effect would be less visible and could not be used for analysis of the
+
                            sortase-mediated reaction. </li>
+
                    </ul>
+
                    <p>
+
                        For recording of sortase reaction parameters we recommend using the FRET-pair sfGFP-TAMRA.
+
                        As this pair of fluorophores proved to have near perfectly aligned spectra and since the
+
                        bleaching effect is visibly lower on sfGFP than on TAMRA, we chose to use this FRET-pair in
+
                        most of our following assay. Nevertheless, we do not rule out the use of TAMRA-mCherry as a
+
                        FRET-pair since we used it in several FRET-assays as well.
+
                    </p>
+
                    <img class="img-fluid center"
+
                        src="https://2019.igem.org/wiki/images/a/a3/T--TU_Darmstadt--FRET_mCherry_TAMRA_Gif.png"
+
                        style="max-width:50%" />
+
                    </a>
+
                    <div class="caption">
+
 
                         <p>
 
                         <p>
                             <b>
+
                             In the above described assays, we noticed the impact of enzyme-substrate ratio and reaction
                                Figure 14 :
+
                             duration on the
                             </b>
+
                            overall product yield. We thought about how to further measure the kinetics of the sortase
                                Animation of Sortase A7M enzyme kinetics over the course of 3 h. The
+
                            reaction. In the
                                reaction speed increases radically in the beginning moving from RFU 8000 to RFU 6000
+
                            literature, sortase reaction kinetics are often measured by FRET-assays. Therefore, we
                                at λ&nbsp;=&nbsp;550&nbsp;nm where a plateau is reached (blue). The negative control
+
                            designed
                                (orange) is also reduced in its RFU due to bleaching. Nevertheless, a peak at
+
                            a suitable
                                λ&nbsp;=&nbsp;580&nbsp;nm arises already after short reaction time. This peak
+
                            FRET-assay. In the
                                indicates the successful Fluorescence Resonance Energy Transfer.
+
                            end, we came
 +
                            up with a new FRET pair not described in the literature to date: 5-TAMRA-LPETG and
 +
                            GGGG-sfGFP.
 
                         </p>
 
                         </p>
                    </div>
+
                         <h4>Development of a new FRET pair</h4>
                    <h3>Why are enzyme-substrate ratio and duration important parameters of the sortase
+
                         reaction?</h3>
+
                    <p>
+
                        In one of our first FRET experiments, we addressed the simple theory: More sortase in the
+
                        reaction mix improves the initial product formation. For this, we used the
+
                        TAMRA-LPETG&nbsp;:&nbsp;GGGG-mCherry FRET pair. We measured the FRET change over time in a
+
                        multiwell platereader <b>(Fig.&nbsp;15)</b>.
+
                    </p>
+
                    <img class="img-fluid center"
+
                        src="https://2019.igem.org/wiki/images/0/03/T--TU_Darmstadt--mCherry_TAMRA_FRET_different_concentrations.png"
+
                        style="max-width:50%" />
+
                    </a>
+
                    <div class="caption">
+
 
                         <p>
 
                         <p>
                             <b>
+
                             For characterization of the reaction kinetics of Sortase&nbsp;A7M, Sortase A5M and
                                Figure 15 :
+
                            Sortase&nbsp;A, we
                            </b>
+
                            decided to develop a suitable FRET&nbsp;pair.
                          Reaction kinetics of Sortase&nbsp;A7M in different concentrations at same
+
                            In order to find an optimal FRET&nbsp;pair, we first recorded an emission and absorption
                                level of substrate concentration.
+
                            spectrum of
 +
                            5-Carboxytetramethylrhodamin-LPETG (TAMRA) and GGGG-mCherry to verify the suitability for
 +
                            the
 +
                            FRET&nbsp;effect, checking for a possible overlap between the donor's emission and the
 +
                            acceptor's
 +
                            extinction.
 
                         </p>
 
                         </p>
                    </div>
+
                         <img class="img-fluid center"
                    <p>
+
                            src="https://2019.igem.org/wiki/images/d/d4/T--TU_Darmstadt--TAMRA_mCherry.JPG"
                         However, in this assay we observed a striking feature of the sortase reaction. In the
+
                            style="max-width:80%" />
                        reaction with more Sortase A7M present, the FRET change started to decrease after a certain
+
                        </a>
                        maximum was reached! We suspected some kind of dead-end product formation, as the sortase
+
                        <div class="caption">
                        does also catalyze the reverse reaction of product to educts. Therefore, the overall
+
                            <p>
                        reaction duration is a very important parameter. We gathered more details about the role of
+
                                <b>
                        the reverse reaction during our comparison of Sortase A7M and Sortase A5M. Just keep reading
+
                                    Figure 5 :
                        if you want to know more!
+
                                </b>
                    </p>
+
                                Design of a FRET-pair of 5-TAMRA-LPETG (TAMRA) and GGGG-mCherry (mCherry). In
                    <h3>Who wins - Sortase A7M or Sortase A5M</h3>
+
                                this configuration TAMRA acts as donor and mCherry as acceptor. When the two
                    <p>
+
                                fluorophores are not linked via the substrates of the sortase only TAMRA is being
                        In our introduction we described that Sortase&nbsp;A7M and Sortase&nbsp;A5M are both
+
                                excited. After sortase mediated ligation of the two substrates mCherry is the
                        fascinating enzymes,
+
                                fluorophore being excited via the FRET and the emission of mCherry intensifies.
                        although each of them has a unique „selling point“. Sortase&nbsp;A5M is faster, whereas
+
                                Meanwhile, the emission of TAMRA decreases.
                        Sortase&nbsp;A7M
+
                            </p>
                        is Ca<sup>2+</sup>-independent. We confirmed both of these points in extensive FRET-assays.
+
                        </div>
                        According to the literature, Sortase&nbsp;A5M works best with a
+
                        Ca<sup>2+</sup>-concentration of 2&nbsp;mM.
+
                        In contrast, Sortase&nbsp;A7M is a calcium-independent mutant of the enzyme. Moreover,
+
                        Ca<sup>2+</sup> even seems to inhibit this enzyme variant slightly
+
                        .
+
                    </p>
+
                    <p> Firstly, we confirmed that in contrast to Sortase&nbsp;A5M, <b>Sortase&nbsp;A7M is
+
                            Ca<sup>2+</sup>-independent.</b>
+
                        The results are shown in <b>Fig.&nbsp;16</b>
+
                        Sortase&nbsp;A7M also works in presence of Ca<sup>2+</sup>, but these FRET experiments made
+
                        us
+
                        suspect that Ca<sup>2+</sup> may even inhibit Sortase&nbsp;A7M.
+
                    </p>
+
                    <img class="img-fluid center"
+
                        src="https://2019.igem.org/wiki/images/9/97/T--TU_Darmstadt--FRET_SrtA7M_mitCa2%2B.png"
+
                        style="max-width:60%" />
+
                    </a>
+
                    <div class="caption">
+
 
                         <p>
 
                         <p>
                             <b>
+
                             TAMRA is a chemical fluorophore that has an absorbance maximum at 543&nbsp;nm and an
                                Figure 16 :
+
                            emission
                             </b>
+
                             maximum at
                          Sortase&nbsp;A7M FRET-assay of connecting TAMRA-LPETG with GGGG-sfGFP with
+
                            570&nbsp;nm. The
                                and without Ca<sup>2+</sup>. The
+
                            terminal carboxy
                                 Sortase&nbsp;A7M reaction was measured with 6&nbsp;mM Ca<sup>2+</sup> every minute.
+
                            group of the dye was linked via a lysine linker to the LPETG sequence (<b>see
                                Sortase&nbsp;A7M reaction without Ca<sup>2+</sup> was measured every three
+
                                 Fig.&nbsp;5</b>).
                                minutes. It is shown that this enzyme variant works with calcium and without calcium
+
                            mCherry has
                                as well, although it seems
+
                            an N-terminal poly-glycine sequence and can therefore be linked to the LPETG motif of TAMRA
                                like Sortase&nbsp;A7M is slightly inhibited due to the presence of calcium which
+
                            via
                                explains why the left graph is lower
+
                            the
                                than the right one.
+
                            Sortase&nbsp;A. For a sufficient FRET-effect, it is also necessary that the distance between
 +
                            donor and
 +
                            acceptor is lower than the Förster radius. The Förster radius describes the distance between
 +
                            two
 +
                            fluorophores at which 50&nbsp;% of the energy is transferred.
 +
                            <br>
 +
                            First, we wanted to identify which concentrations are needed for our experiment, then set up
 +
                            the
 +
                            reaction
 +
                            and measured fluorescence intensities. Over time, a decline in the emission of TAMRA can be
 +
                            observed as
 +
                            Sortase&nbsp;A7M/A5M is converting more educts to products.
 
                         </p>
 
                         </p>
                    </div>
+
                         <img class="img-fluid center"
                    <p> Secondly, we confirmed that <b>Sortase&nbsp;A5M is inactive if Ca<sup>2+</sup> is
+
                            src="https://2019.igem.org/wiki/images/0/06/T--TU_Darmstadt--mCherry_TAMRA_Extinction_Emission.png"
                            absent</b>, which can be seen in <b>Fig. 17</b>
+
                            style="max-width:50%" />
                        As expected, Sortase&nbsp;A5M shows increasing enzymatic activity with increasing
+
                        </a>
                         Ca<sup>2+</sup> levels. The reaction runs fastest with 2&nbsp;mM Ca<sup>2+</sup>, and the
+
                        <div class="caption">
                        maximal FRET change
+
                            <p>
                        (in terms of ΔRFU) is reached after 37.5&nbsp;min. Strikingly, the FRET change decreases
+
                                <b>
                        afterwards. We observed this phenomenon before and assume this to be due to dead-end product
+
                                    Figure 6 :
                        formation caused by the reverse reaction.
+
                                </b>
                    </p>
+
                                The graph shows the extinction and emission spectra of TAMRA and mCherry. Due
                    <img class="img-fluid center"
+
                                to the large overlap of TAMRA emission and mCherry extinction it is possible to perform
                        src="https://2019.igem.org/wiki/images/3/38/T--TU_Darmstadt--CalciumFRET.png"
+
                                a FRET with this pair of fluorophores. The graph show the relative fluorescence unit
                        style="max-width:65%" />
+
                                (RFU[%]) in relation to the extincted/emitted wavelength [nm]. The peaks are normalized
                    </a>
+
                                to 100&nbsp;%.
                   
+
                            </p>
                    <img class="img-fluid center"
+
                        </div>
                        src="https://2019.igem.org/wiki/images/4/4d/T--TU_Darmstadt--FRET_SrtA7M_ohneCa2%2B.png"
+
                        style="max-width:65%" />
+
                    </a>
+
                    <div class="caption">
+
 
                         <p>
 
                         <p>
                             <b>
+
                             The emission and extinction spectra of TAMRA and mCherry exhibit an overlap of emission of
                                Figure 17 :
+
                            TAMRA
                             </b>
+
                             and
                             Both figures show Sortase&nbsp;A5M FRET assay connecting TAMRA-LPETG and
+
                            extinction of mCherry. Based on this output, a FRET-assay for the kinetics of
                                GGGG-sfGFP with different Ca<sup>2+</sup>-concentrations. The right graph is
+
                             Sortase&nbsp;A7M
                                showing that Sortase&nbsp;A5M does not work without calcium. The negative ΔRFU
+
                            was performed
                                measurements are probably caused by measuring errors by the
+
                            to confirm whether the FRET-pair is working.
                                Tecan platereader.
+
                            As TAMRA is excited with light of a lower wavelength than mCherry, the former serves as FRET
 +
                            donor and the
 +
                            latter as acceptor. We chose the excitation wavelength at 485&nbsp;nm to prevent unnecessary
 +
                            “leak”
 +
                            excitation of mCherry.
 +
                            Nevertheless, an extinction of mCherry could not be excluded and may have negative effects
 +
                            on
 +
                            the visibility
 +
                            of the FRET.
 
                         </p>
 
                         </p>
                    </div>
+
                        <img class="img-fluid center"
 +
                            src="https://2019.igem.org/wiki/images/b/b1/T--TU_Darmstadt--mCherry_TAMRA_Bleaching_Negativecontrol.png"
 +
                            style="max-width:50%" />
 +
                        </a>
 +
                        <div class="caption">
 +
                            <p>
 +
                                <b>
 +
                                    Figure 7 :
 +
                                </b>
 +
                                Spectrum of the negative control of TAMRA and mCherry,
 +
                                without Sortase A7M, over the course of 20 min in 5 min intervals.
 +
                                Depicted are the emission wavelengths against the RFU.
 +
                            </p>
 +
                        </div>
  
                    <p>
+
                         <img class="img-fluid center"
                        According to the results of this assay, Sortase&nbsp;A7M is definitely
+
                            src="https://2019.igem.org/wiki/images/f/fd/T--TU_Darmstadt--mCherry_TAMRA_Bleaching_Positive.png"
                         Ca<sup>2+</sup>-independent, since it shows
+
                            style="max-width:50%" />
                        linking activity without calcium in the vicinity. The enzyme mutant also works in presence
+
                        </a>
                        of Ca<sup>2+</sup> (<b>Fig.&nbsp;17</b>),
+
                        <div class="caption">
                        but these FRET experiments made us suspect that Ca<sup>2+</sup> may even inhibit
+
                            <p>
                        Sortase&nbsp;A7M, since it shows less activity with calcium around than without calcium.
+
                                <b>
                    </p>
+
                                    Figure 8 :
                    <p>
+
                                </b>
                        To better address this question, an ELISA was
+
                                Spectrum of TAMRA and mCherry, with Sortase&nbsp;A7M, over the course of
                        performed. Therefore, a piece of paper functionalized with GGGβA was connected to a protein
+
                                20&nbsp;min in 5&nbsp;min intervals. Depicted are the emission wavelengths against the
                        domain, which binds
+
                                RFU. The sortase-mediated ligation results in a decline of both emission peaks.
                        antibodies to the LPTEG-tag. The results are shown in <b>Fig.&nbsp;18</b>.
+
                            </p>
                    </p>
+
                        </div>
                    <img class="img-fluid center"
+
                        src="https://2019.igem.org/wiki/images/7/77/T--TU_Darmstadt--Absorbance_450_Sortase_yield.png"
+
                        style="max-width:30%" />
+
                    </a>
+
                    <div class="caption">
+
 
                         <p>
 
                         <p>
                             <b>
+
                             The analysis of the data shown in <b>Fig.&nbsp;7</b> confirmed the aforementioned
                                Figure 18 :
+
                            suspicion that mCherry is also excited at 485&nbsp;nm, which makes differentiation
                            </b>
+
                            of the fluorescence more difficult. Furthermore, <b>Fig.&nbsp;8</b> shows that the
                                Absorbance at 450&nbsp;nm at a temperature of 23.8˚&nbsp;C <br>
+
                            difference in the decline of TAMRA is not significant. Accordingly, a decline in the
                                In well 1 additional 10&nbsp;mM Ca<sup>2+</sup> were
+
                            emission maximum of TAMRA over time is also visible in the negative control. One
                                added which was not the case in well 2. Well 3 serves as a negative control since
+
                            reason might be bleaching of TAMRA through the excitation by the laser.
                                the enzyme is missing in this reaction
+
                            Nevertheless, conversion by the Sortase&nbsp;A7M can be observed by comparing the
 +
                            results with the negative control.
 
                         </p>
 
                         </p>
                    </div>
+
                         <img class="img-fluid center"
                    <p>
+
                            src="https://2019.igem.org/wiki/images/9/92/T--TU_Darmstadt--mCherry_TAMRA_FRET_SortaseA7M.png"
                         As shown in <b>Fig. 18</b>, the highest absorption was measured in well 2. Thus,
+
                            style="max-width:60%" />
                        Sortase&nbsp;A7M works more efficiently
+
                        </a>
                        when no Ca<sup>2+</sup> is around. The absorption is also relatively high for the negative
+
                        <div class="caption">
                        control,
+
                            <p>
                        which can be explained by poor washing before the substrate for Horeseradish peroxidase
+
                                <b>
                        (HPR) was added. This assay shows
+
                                    Figure 9 :
                        the functionality of Sortase&nbsp;A7M even in context of surfaces since we confirmed that
+
                                </b>
                        Sortase&nbsp;A7M
+
                                ortase reaction in TAMRA-mCherry-FRET after subtracting the negative control. Depicted
                        is able to connect tags attached to paper. This shows that the surface structure is not a
+
                                is the difference in RFU over time [min]. Within the first 20&nbsp;min of the substrate
                        relevant factor for the enzyme.
+
                                conversion is the quickest. At 30&nbsp;min a plateau is reached. After 60&nbsp;min
                    </p>
+
                                starts catalyzing the reverse reaction. The mean ΔRFU value was normalized to zero for
                    <img class="img-fluid center"
+
                                better visualization. The ΔRFU refers to the difference between the negative control
                        src="https://2019.igem.org/wiki/images/c/c7/T--TU_Darmstadt--Vergleich_A7M_A5M_bei_opt_Bedingung.png"
+
                                without the respective sortase at 570 nm.
                        style="max-width:60%" />
+
                            </p>
                    </a>
+
                        </div>
                    <div class="caption">
+
 
                         <p>
 
                         <p>
                             <b>
+
                             To confirm the functionality of the Sortase&nbsp;A7M, another more sufficient FRET-pair was
                                Figure 19 :
+
                            developed. The measured absorbance and emission spectra indicated that TAMRA and superfolder
                             </b>
+
                             green fluorescence protein (sfGFP) are a possible FRET-pair. The sfGFP has an N-terminal
                             Comparison of the reaction speed of  
+
                             polyglycine sequence and can therefore be linked to TAMRA with the sorting motif, in the
                             Sortase A5M with Ca<sup>2+</sup> and Sortase A7M
+
                            same
                             without Ca<sup>2+</sup>.
+
                            way as mCherry was connected. However, the small overlap between the extinction spectra of
 +
                            sfGFP
 +
                            and TAMRA could solve the previous “simultaneous excitation” problem we observed for the
 +
                            mCherry-TAMRA FRET-pair. Because of the lower excitation maximum of sfGFP compared to TAMRA,
 +
                             sfGFP was chosen as donor and TAMRA as acceptor. sfGFP was excited at 465&nbsp;nm to
 +
                             minimize
 +
                            the unnecessary leak excitation of sfGFP.
 
                         </p>
 
                         </p>
                    </div>
+
                        <img class="img-fluid center"
                    <p>
+
                            src="https://2019.igem.org/wiki/images/9/90/T--TU_Darmstadt--FRET_pair_sfGFP_TAMRA.png"
                        When we compare the reaction speed of Sortase&nbsp;A5M and Sortase&nbsp;A7M,
+
                            style="max-width:60%" />
                        Sortase&nbsp;A5M is the
+
                         </a>
                        clear winner (see <b>Fig. : 19</b>). However, this means of course that the reverse reaction is also faster in the
+
                        <div class="caption">
                        case of Sortase&nbsp;A5M.
+
                            <p>
                        Consequently, Sortase&nbsp;A7M is the best variant for in vivo modification of our VLPs as
+
                                <b>
                        it is Ca<sup>2+</sup>-independent.
+
                                    Figure 10 :
                        On the other hand, Sortase&nbsp;A5M is a suitable
+
                                </b>
                         enzyme variant for in vitro modification due to its high efficiency.
+
                                The graph shows the extinction and emission spectra of
                    </p>
+
                                TAMRA and mCherry. Due to the large overlap of sfGFP emission and TAMRA
                    <h3>What about other substrates?</h3>
+
                                extinction it is possible to perform a FRET with this pair of fluorophores.
                    <h4>Primary Amines</h4>
+
                                The graph show the relative fluorescence unit (RFU[%]) in relation to the
                    <p>The literature
+
                                extincted/emitted
                        describes Sortase&nbsp;A7M as somewhat „promiscuous“ towards other substrates than
+
                                wavelength [nm]. The peaks are normalized to 100 %.
                        GGGG(polyG) as long as the substrate possesses a primary amine. To confirm this, we
+
                            </p>
                        performed additional assays with other substrates in the lab of Prof. Kolmar. The
+
                        </div>
                        Sortase&nbsp;A7M used for this assay was stored in the fridge at 4&nbsp;°C for two weeks.
+
                        <img class="img-fluid center"
                        The substrates were TAMRA with a KLPETG bound to TAMRA via the lysine side chain and
+
                            src="https://2019.igem.org/wiki/images/c/c0/T--TU_Darmstadt--Tamra_GFP_Johny.jpg"
                        3-azidopropanamine as the example for a primary amine. The reaction was performed for two
+
                            style="max-width:80%" />
                        hours at 37&nbsp;°C. It was then analyzed by electron spray ionization mass spectrometry
+
                        </a>
                        (ESI-MS) <b>(Fig.&nbsp;20)</b>. </p>
+
                        <div class="caption">
                    <img class="img-fluid center"
+
                            <p>
                        src="https://2019.igem.org/wiki/images/9/96/T--TU_Darmstadt--SortaseFigure1TAMRA_KE.png"
+
                                <b>
                        style="max-width:100%" />
+
                                    Figure 11 :
                    </a>
+
                                </b>
                    <div class="caption">
+
                                Design of a FRET-pair of 5-TAMRA-LPETG (TAMRA) and GGGG-sfGFP (sfGFP). In this
 +
                                configuration sfGFP acts as donor and TAMRA as acceptor. When the two fluorophores are
 +
                                not linked only sfGFP is being excited. After sortase-mediated ligation of the two
 +
                                substrates, TAMRA is the fluorophore being excited via FRET and the emission of TAMRA
 +
                                intensifies. Meanwhile, the emission of sfGFP decreases.
 +
                            </p>
 +
                        </div>
 
                         <p>
 
                         <p>
                             <b>
+
                             The transfer of energy from sfGFP to TAMRA can be seen by the decrease in emission of sfGFP
                                Figure 20 :
+
                            and
                             </b>
+
                             increase in emission from TAMRA. Compared to TAMRA as an acceptor, the sfGFP bleaches
                          Mass spectrum before the reaction of TAMRA-LPETG with 3-azidopropanamine
+
                            significantly less and is consequently more suitable as a donor for FRET. Furthermore, the
                                showing the educt at 1054 g/mol.
+
                            afore
 +
                            mentioned problem of simultaneous donor and acceptor excitation seems to be solved. It seems
 +
                            that we have found a FRET-pair with superior properties.
 
                         </p>
 
                         </p>
                    </div>
+
                        <img class="img-fluid center"
                    <p><b>Fig.&nbsp;20</b> shows the educt-peak in the mass spectrum. TAMRA with the LPETG-tag
+
                            src="https://2019.igem.org/wiki/images/8/85/T--TU_Darmstadt--Sortase_A7M_Proof_N2_Without_Sortase_A7M.png"
                        weighs 1054 g/mol. Shown above in green is the single charged molecule at 1054.27 g/mol and
+
                            style="max-width:50%" />
                        the double charged molecule at 528.75 g/mol.</p>
+
                        </a>
                    <img class="img-fluid center"
+
                        <div class="caption">
                        src="https://2019.igem.org/wiki/images/7/7a/T--TU_Darmstadt--SortaseFigure2TAMRA_KE.png"
+
                            <p>
                        style="max-width:90%" />
+
                                <b>
                    </a>
+
                                    Figure 12 :
                    <div class="caption">
+
                                </b>
 +
                                Spectrum of the negative control of TAMRA and sfGFP,
 +
                                without Sortase A7M, over the course of 25 min in 5 min intervals.
 +
                                Depicted are the emission wavelengths against the RFU.
 +
                            </p>
 +
                        </div>
 +
                        <img class="img-fluid center"
 +
                            src="https://2019.igem.org/wiki/images/0/04/T--TU_Darmstadt--Sortase_A7M_Proof_N2_With_Sortase_A7M.png"
 +
                            style="max-width:50%" />
 +
                        </a>
 +
                        <div class="caption">
 +
                            <p>
 +
                                <b>
 +
                                    Figure 13 :
 +
                                </b>
 +
                                Spectrum of TAMRA and sfGFP, with Sortase&nbsp;A7M, over the course of
 +
                                25&nbsp;min in 5&nbsp;min intervals. Depicted are the emission wavelengths against the
 +
                                RFU. The sortase-mediated ligation results in a decline of both emission peaks.
 +
                            </p>
 +
                        </div>
 
                         <p>
 
                         <p>
                             <b>
+
                             Due to the collected data of both FRET-pairs we decided to use the TAMRA-LPETG and
                                Figure 21 :
+
                            GGGG-sfGFP
                            </b>
+
                            FRET-pair for further characterization of our Sortase&nbsp;A variants. Two reasons justify
                            Mass spectrum after the reaction of TAMRA-LPETG with 3-azidopropanamine
+
                            this
                                showing the product at 1079.37g/mol.
+
                            decision:
 
                         </p>
 
                         </p>
                    </div>
 
                    <b>Fig. 21</b> shows the product-peak in the mass spectrum. The primary amine that was taken
 
                    as an example has a molecular weight of 100 g/mol. After the reaction the glycine of the
 
                    LPETG-tag has been removed and therefore the product only consists of
 
                    TAMRA-KLPET-3-azidopropanamine. When adding the two molecular weights and subtracting the weight
 
                    of the glycine it adds up to a total weight of 1078 g/mol which can be seen in the single loaded
 
                    1079.37 g/mol peak <b>(Fig. 21)</b>, since the ESI-MS we used has a small error margin. The peak
 
                    in black again is the double loaded peak at 541.55 g/mol. This clearly shows that the sortase
 
                    reaction took place. Furthermore, we can conclude that the Sortase A7M accepts any primary amine
 
                    as a substrate. However, mass spectrum does not show the ratio of educt and product, which is
 
                    why we cannot estimate whether the turnover is as high as when using a polyG-tag as substrate.
 
                    Additionally this assay confirms our suspicion that the Sortase A7M is stable at 4&nbsp;°C and
 
                    still functional if stored at said temperature for at least two weeks. <p></p>
 
                    <h5>Yield</h5>
 
                    <p>For the characterization of Sortase A7M an assay was designed to show the coupling efficiency
 
                        between the TAMRA-LEPTG and the tetrapeptide GGG-Beta-Alanin (GGGβA) catalyzed by the
 
                        Sortase. The Sortase reaction was performed for 1h at
 
                        30˚C and was stopped by enzyme separation through centrifugal filtration. For analysis mass
 
                        spectrometry (ESI-MS) was used. The mass spectrometry enables differentiation between
 
                        products and educts. It allowed us to make an estimate of the product yield.
 
                        The calculated theoretical molecular masses are 1054 g/mol for TAMRA and 1240 g/mol for
 
                        TAMRA-LPETGGGβA. Therefore, peaks are expected at mass/n, with n ∈ N. By comparison of the
 
                        number of corresponding peaks, estimation of the product yield is possible as both molecules
 
                        possess the same amount of ionizable groups and thus the difference in the ionizability of
 
                        both molecules is negligible. </p>
 
                    <img class="img-fluid center"
 
                        src="https://2019.igem.org/wiki/images/3/36/T--TU_Darmstadt--results_BC_mass_spectrum.png"
 
                        style="max-width:90%" />
 
                    </a>
 
                    <div class="caption">
 
 
                         <p>
 
                         <p>
                             <b>
+
                             <ul>
                                 Figure 22 :
+
                                 <li>TAMRA bleaches stronger than sfGFP when excited with a laser.</li>
                             </b>
+
                                <li>The spectral overlap between TAMRA and mCherry disturbs “clean” energy transfer,
                          Mass spectrum of the sortase-mediated ligation of TAMRA-LPETG and GGGβA
+
                                    thus
                                showing the difference in height of the educt-peak and the product-peak which can be
+
                                    the FRET-effect would be less visible and could not be used for analysis of the
                                 used to estimate the yield of our Sortase&nbsp;A7M.
+
                                    sortase-mediated reaction. </li>
                        </p>
+
                            </ul>
                    </div>
+
                            <p>
                    <p>In <b>Fig. 22</b> the 621.56 peak can be assigned to the TAMRA-LEPTGGGβA and the 528.85 to
+
                                For recording of sortase reaction parameters we recommend using the FRET-pair
                        the TAMRA-LPETG. The count ratios of the two molecules mentioned show an excess of the
+
                                sfGFP-TAMRA.
                        product. </p>
+
                                As this pair of fluorophores proved to have near perfectly aligned spectra and since the
 +
                                bleaching effect is visibly lower on sfGFP than on TAMRA, we chose to use this FRET-pair
 +
                                in
 +
                                most of our following assay. Nevertheless, we do not rule out the use of TAMRA-mCherry
 +
                                as a
 +
                                FRET-pair since we used it in several FRET-assays as well.
 +
                            </p>
 +
                            <img class="img-fluid center"
 +
                                src="https://2019.igem.org/wiki/images/a/a3/T--TU_Darmstadt--FRET_mCherry_TAMRA_Gif.png"
 +
                                style="max-width:50%" />
 +
                             </a>
 +
                            <div class="caption">
 +
                                <p>
 +
                                    <b>
 +
                                        Figure 14 :
 +
                                    </b>
 +
                                    Animation of Sortase A7M enzyme kinetics over the course of 3 h. The
 +
                                    reaction speed increases radically in the beginning moving from RFU 8000 to RFU 6000
 +
                                    at λ&nbsp;=&nbsp;550&nbsp;nm where a plateau is reached (blue). The negative control
 +
                                    (orange) is also reduced in its RFU due to bleaching. Nevertheless, a peak at
 +
                                    λ&nbsp;=&nbsp;580&nbsp;nm arises already after short reaction time. This peak
 +
                                    indicates the successful Fluorescence Resonance Energy Transfer.
 +
                                </p>
 +
                            </div>
 +
                            <h3>Why are enzyme-substrate ratio and duration important parameters of the sortase
 +
                                reaction?</h3>
 +
                            <p>
 +
                                In one of our first FRET experiments, we addressed the simple theory: More sortase in
 +
                                the
 +
                                reaction mix improves the initial product formation. For this, we used the
 +
                                TAMRA-LPETG&nbsp;:&nbsp;GGGG-mCherry FRET pair. We measured the FRET change over time in
 +
                                a
 +
                                multiwell platereader <b>(Fig.&nbsp;15)</b>.
 +
                            </p>
 +
                            <img class="img-fluid center"
 +
                                src="https://2019.igem.org/wiki/images/0/03/T--TU_Darmstadt--mCherry_TAMRA_FRET_different_concentrations.png"
 +
                                style="max-width:50%" />
 +
                            </a>
 +
                            <div class="caption">
 +
                                <p>
 +
                                    <b>
 +
                                        Figure 15 :
 +
                                    </b>
 +
                                    Reaction kinetics of Sortase&nbsp;A7M in different concentrations at same level of
 +
                                    substrate
 +
                                    concentration (6 µM TAMRA-LPETG and (M)GGGG-mCherry). The light blue graph shows the
 +
                                    reaction when the
 +
                                    sortase concentration is higher (5 µM) and lower concentration (1 µM), in the dark
 +
                                    blue graph. Wen the
 +
                                    enzyme concentration is lower the maximum in substrate conversion is reached later.
 +
                                    The light blue graph
 +
                                    also shows a slight decline in product concentration from 60&nbsp;min onwards.The
 +
                                    ΔRFU refers to the
 +
                                    respective negative control without each sortase at 570 nm. The mean ΔRFU value was
 +
                                    normalized to zero
 +
                                    for better visualization.
 +
                                </p>
 +
                            </div>
 +
                            <p>
 +
                                However, in this assay we observed a striking feature of the sortase reaction. In the
 +
                                reaction with more Sortase A7M present, the FRET change started to decrease after a
 +
                                certain
 +
                                maximum was reached! We suspected some kind of dead-end product formation, as the
 +
                                sortase
 +
                                does also catalyze the reverse reaction of product to educts. Therefore, the overall
 +
                                reaction duration is a very important parameter. We gathered more details about the role
 +
                                of
 +
                                the reverse reaction during our comparison of Sortase A7M and Sortase A5M. Just keep
 +
                                reading
 +
                                if you want to know more!
 +
                            </p>
 +
                            <h3>Who wins - Sortase A7M or Sortase A5M</h3>
 +
                            <p>
 +
                                 In our introduction we described that Sortase&nbsp;A7M and Sortase&nbsp;A5M are both
 +
                                fascinating enzymes,
 +
                                although each of them has a unique „selling point“. Sortase&nbsp;A5M is faster, whereas
 +
                                Sortase&nbsp;A7M
 +
                                is Ca<sup>2+</sup>-independent. We confirmed both of these points in extensive
 +
                                FRET-assays.
 +
                                According to the literature, Sortase&nbsp;A5M works best with a
 +
                                Ca<sup>2+</sup>-concentration of 2&nbsp;mM.
 +
                                In contrast, Sortase&nbsp;A7M is a calcium-independent mutant of the enzyme. Moreover,
 +
                                Ca<sup>2+</sup> even seems to inhibit this enzyme variant slightly
 +
                                .
 +
                            </p>
 +
                            <p> Firstly, we confirmed that in contrast to Sortase&nbsp;A5M, <b>Sortase&nbsp;A7M is
 +
                                    Ca<sup>2+</sup>-independent.</b>
 +
                                The results are shown in <b>Fig.&nbsp;16</b>
 +
                                Sortase&nbsp;A7M also works in presence of Ca<sup>2+</sup>, but these FRET experiments
 +
                                made
 +
                                us
 +
                                suspect that Ca<sup>2+</sup> may even inhibit Sortase&nbsp;A7M.
 +
                            </p>
 +
                            <img class="img-fluid center"
 +
                                src="https://2019.igem.org/wiki/images/9/97/T--TU_Darmstadt--FRET_SrtA7M_mitCa2%2B.png"
 +
                                style="max-width:60%" />
 +
                            </a>
 +
                            <div class="caption">
 +
                                <p>
 +
                                    <b>
 +
                                        Figure 16 :
 +
                                    </b>
 +
                                    Sortase&nbsp;A7M FRET-assay of connecting TAMRA-LPETG with GGGG-sfGFP with and
 +
                                    without
 +
                                    Ca<sup>2+</sup>. The
 +
                                    Sortase&nbsp;A7M reaction was measured with 6&nbsp;mM Ca<sup>2+</sup> every minute.
 +
                                    Sortase&nbsp;A7M reaction without Ca<sup>2+</sup> was measured every three
 +
                                    minutes. It is shown that this enzyme variant works with calcium and without calcium
 +
                                    as well,
 +
                                    although it seems
 +
                                    like Sortase&nbsp;A7M is slightly inhibited due to the presence of calcium which
 +
                                    explains why
 +
                                    the left graph is lower
 +
                                    than the right one. The ΔRFU refers to the respective negative control without each
 +
                                    sortase at
 +
                                    514 nm. The mean ΔRFU value of the duplicates was normalized to zero for better
 +
                                    visualization.
 +
                                </p>
 +
                            </div>
 +
                            <p> Secondly, we confirmed that <b>Sortase&nbsp;A5M is inactive if Ca<sup>2+</sup> is
 +
                                    absent</b>, which can be seen in <b>Fig. 17</b>
 +
                                As expected, Sortase&nbsp;A5M shows increasing enzymatic activity with increasing
 +
                                Ca<sup>2+</sup> levels. The reaction runs fastest with 2&nbsp;mM Ca<sup>2+</sup>, and
 +
                                the
 +
                                maximal FRET change
 +
                                (in terms of ΔRFU) is reached after 37.5&nbsp;min. Strikingly, the FRET change decreases
 +
                                afterwards. We observed this phenomenon before and assume this to be due to dead-end
 +
                                product
 +
                                formation caused by the reverse reaction.
 +
                            </p>
 +
                            <img class="img-fluid center"
 +
                                src="https://2019.igem.org/wiki/images/3/38/T--TU_Darmstadt--CalciumFRET.png"
 +
                                style="max-width:65%" />
 +
                            </a>
  
<h2>Is Sortase A7M able to attach cargo to P22 coat protein?</h2>
+
                            <img class="img-fluid center"
 +
                                src="https://2019.igem.org/wiki/images/4/4d/T--TU_Darmstadt--FRET_SrtA7M_ohneCa2%2B.png"
 +
                                style="max-width:65%" />
 +
                            </a>
 +
                            <div class="caption">
 +
                                <p>
 +
                                    <b>
 +
                                        Figure 17 :
 +
                                    </b>
 +
                                    Both figures show Sortase&nbsp;A5M FRET assay connecting TAMRA-LPETG and GGGG-sfGFP
 +
                                    with different
 +
                                    Ca<sup>2+</sup>-concentrations. The right graph is
 +
                                    showing that Sortase&nbsp;A5M does not work without calcium. The negative ΔRFU
 +
                                    measurements are probably caused by measuring errors by the
 +
                                    Tecan platereader. The ΔRFU refers to the respective negative control without each
 +
                                    sortase at 514 nm.
 +
                                    The mean ΔRFU value of the duplicates was normalized to zero for better
 +
                                    visualization.
 +
                                </p>
 +
                            </div>
  
 +
                            <p>
 +
                                According to the results of this assay, Sortase&nbsp;A7M is definitely
 +
                                Ca<sup>2+</sup>-independent, since it shows
 +
                                linking activity without calcium in the vicinity. The enzyme mutant also works in
 +
                                presence
 +
                                of Ca<sup>2+</sup> (<b>Fig.&nbsp;17</b>),
 +
                                but these FRET experiments made us suspect that Ca<sup>2+</sup> may even inhibit
 +
                                Sortase&nbsp;A7M, since it shows less activity with calcium around than without calcium.
 +
                            </p>
 +
                            <p>
 +
                                To better address this question, an ELISA was
 +
                                performed. Therefore, a piece of paper functionalized with GGGβA was connected to a
 +
                                protein
 +
                                domain, which binds
 +
                                antibodies to the LPTEG-tag. The results are shown in <b>Fig.&nbsp;18</b>.
 +
                            </p>
 +
                            <img class="img-fluid center"
 +
                                src="https://2019.igem.org/wiki/images/7/77/T--TU_Darmstadt--Absorbance_450_Sortase_yield.png"
 +
                                style="max-width:30%" />
 +
                            </a>
 +
                            <div class="caption">
 +
                                <p>
 +
                                    <b>
 +
                                        Figure 18 :
 +
                                    </b>
 +
                                    Absorbance at 450&nbsp;nm at a temperature of 23.8˚&nbsp;C <br>
 +
                                    In well 1 additional 10&nbsp;mM Ca<sup>2+</sup> were
 +
                                    added which was not the case in well 2. Well 3 serves as a negative control since
 +
                                    the enzyme is missing in this reaction
 +
                                </p>
 +
                            </div>
 +
                            <p>
 +
                                As shown in <b>Fig. 18</b>, the highest absorption was measured in well 2. Thus,
 +
                                Sortase&nbsp;A7M works more efficiently
 +
                                when no Ca<sup>2+</sup> is around. The absorption is also relatively high for the
 +
                                negative
 +
                                control,
 +
                                which can be explained by poor washing before the substrate for Horeseradish peroxidase
 +
                                (HPR) was added. This assay shows
 +
                                the functionality of Sortase&nbsp;A7M even in context of surfaces since we confirmed
 +
                                that
 +
                                Sortase&nbsp;A7M
 +
                                is able to connect tags attached to paper. This shows that the surface structure is not
 +
                                a
 +
                                relevant factor for the enzyme.
 +
                            </p>
 +
                            <img class="img-fluid center"
 +
                                src="https://2019.igem.org/wiki/images/c/c7/T--TU_Darmstadt--Vergleich_A7M_A5M_bei_opt_Bedingung.png"
 +
                                style="max-width:60%" />
 +
                            </a>
 +
                            <div class="caption">
 +
                                <p>
 +
                                    <b>
 +
                                        Figure 19 :
 +
                                    </b>
 +
                                    Comparison of the reaction speed of Sortase&nbsp;A5M with Ca<sup>2+</sup> and
 +
                                    Sortase&nbsp;A7M without Ca<sup>2+</sup>, therefore each working under optimal conditions.
 +
                                    The kinetics were measured via a FRET connecting TAMRA-LPETG and GGGG-sfGFP. The ΔRFU refers
 +
                                    to the respective negative control without each sortase at 514 nm. The mean ΔRFU value of
 +
                                    the triplicates was normalized to zero for better visualization.
 +
                                </p>
 +
                            </div>
 +
                            <p>
 +
                                When we compare the reaction speed of Sortase&nbsp;A5M and Sortase&nbsp;A7M,
 +
                                Sortase&nbsp;A5M is the
 +
                                clear winner (see <b>Fig. : 19</b>). However, this means of course that the reverse
 +
                                reaction is also faster in the
 +
                                case of Sortase&nbsp;A5M.
 +
                                Consequently, Sortase&nbsp;A7M is the best variant for in vivo modification of our VLPs
 +
                                as
 +
                                it is Ca<sup>2+</sup>-independent.
 +
                                On the other hand, Sortase&nbsp;A5M is a suitable
 +
                                enzyme variant for in vitro modification due to its high efficiency.
 +
                            </p>
 +
                            <h3>What about other substrates?</h3>
 +
                            <h4>Primary Amines</h4>
 +
                            <p>The literature
 +
                                describes Sortase&nbsp;A7M as somewhat „promiscuous“ towards other substrates than
 +
                                GGGG(polyG) as long as the substrate possesses a primary amine. To confirm this, we
 +
                                performed additional assays with other substrates in the lab of Prof. Kolmar. The
 +
                                Sortase&nbsp;A7M used for this assay was stored in the fridge at 4&nbsp;°C for two
 +
                                weeks.
 +
                                The substrates were TAMRA with a KLPETG bound to TAMRA via the lysine side chain and
 +
                                3-azidopropanamine as the example for a primary amine. The reaction was performed for
 +
                                two
 +
                                hours at 37&nbsp;°C. It was then analyzed by electron spray ionization mass spectrometry
 +
                                (ESI-MS) <b>(Fig.&nbsp;20)</b>. </p>
 +
                            <img class="img-fluid center"
 +
                                src="https://2019.igem.org/wiki/images/9/96/T--TU_Darmstadt--SortaseFigure1TAMRA_KE.png"
 +
                                style="max-width:100%" />
 +
                            </a>
 +
                            <div class="caption">
 +
                                <p>
 +
                                    <b>
 +
                                        Figure 20 :
 +
                                    </b>
 +
                                    Mass spectrum before the reaction of TAMRA-LPETG with 3-azidopropanamine
 +
                                    showing the educt at 1054 g/mol.
 +
                                </p>
 +
                            </div>
 +
                            <p><b>Fig.&nbsp;20</b> shows the educt-peak in the mass spectrum. TAMRA with the LPETG-tag
 +
                                weighs 1054 g/mol. Shown above in green is the single charged molecule at 1054.27 g/mol
 +
                                and
 +
                                the double charged molecule at 528.75 g/mol.</p>
 +
                            <img class="img-fluid center"
 +
                                src="https://2019.igem.org/wiki/images/7/7a/T--TU_Darmstadt--SortaseFigure2TAMRA_KE.png"
 +
                                style="max-width:90%" />
 +
                            </a>
 +
                            <div class="caption">
 +
                                <p>
 +
                                    <b>
 +
                                        Figure 21 :
 +
                                    </b>
 +
                                    Mass spectrum after the reaction of TAMRA-LPETG with 3-azidopropanamine
 +
                                    showing the product at 1079.37g/mol.
 +
                                </p>
 +
                            </div>
 +
                            <b>Fig. 21</b> shows the product-peak in the mass spectrum. The primary amine that was taken
 +
                            as an example has a molecular weight of 100 g/mol. After the reaction the glycine of the
 +
                            LPETG-tag has been removed and therefore the product only consists of
 +
                            TAMRA-KLPET-3-azidopropanamine. When adding the two molecular weights and subtracting the
 +
                            weight
 +
                            of the glycine it adds up to a total weight of 1078 g/mol which can be seen in the single
 +
                            loaded
 +
                            1079.37 g/mol peak <b>(Fig. 21)</b>, since the ESI-MS we used has a small error margin. The
 +
                            peak
 +
                            in black again is the double loaded peak at 541.55 g/mol. This clearly shows that the
 +
                            sortase
 +
                            reaction took place. Furthermore, we can conclude that the Sortase A7M accepts any primary
 +
                            amine
 +
                            as a substrate. However, mass spectrum does not show the ratio of educt and product, which
 +
                            is
 +
                            why we cannot estimate whether the turnover is as high as when using a polyG-tag as
 +
                            substrate.
 +
                            Additionally this assay confirms our suspicion that the Sortase A7M is stable at 4&nbsp;°C
 +
                            and
 +
                            still functional if stored at said temperature for at least two weeks. <p></p>
 +
                            <h5>Yield</h5>
 +
                            <p>For the characterization of Sortase A7M an assay was designed to show the coupling
 +
                                efficiency
 +
                                between the TAMRA-LEPTG and the tetrapeptide GGG-Beta-Alanin (GGGβA) catalyzed by the
 +
                                Sortase. The Sortase reaction was performed for 1h at
 +
                                30˚C and was stopped by enzyme separation through centrifugal filtration. For analysis
 +
                                mass
 +
                                spectrometry (ESI-MS) was used. The mass spectrometry enables differentiation between
 +
                                products and educts. It allowed us to make an estimate of the product yield.
 +
                                The calculated theoretical molecular masses are 1054 g/mol for TAMRA and 1240 g/mol for
 +
                                TAMRA-LPETGGGβA. Therefore, peaks are expected at mass/n, with n ∈ N. By comparison of
 +
                                the
 +
                                number of corresponding peaks, estimation of the product yield is possible as both
 +
                                molecules
 +
                                possess the same amount of ionizable groups and thus the difference in the ionizability
 +
                                of
 +
                                both molecules is negligible. </p>
 +
                            <img class="img-fluid center"
 +
                                src="https://2019.igem.org/wiki/images/3/36/T--TU_Darmstadt--results_BC_mass_spectrum.png"
 +
                                style="max-width:90%" />
 +
                            </a>
 +
                            <div class="caption">
 +
                                <p>
 +
                                    <b>
 +
                                        Figure 22 :
 +
                                    </b>
 +
                                    Mass spectrum of the sortase-mediated ligation of TAMRA-LPETG and GGGβA
 +
                                    showing the difference in height of the educt-peak and the product-peak which can be
 +
                                    used to estimate the yield of our Sortase&nbsp;A7M.
 +
                                </p>
 +
                            </div>
 +
                            <p>In <b>Fig. 22</b> the 621.56 peak can be assigned to the TAMRA-LEPTGGGβA and the 528.85
 +
                                to
 +
                                the TAMRA-LPETG. The count ratios of the two molecules mentioned show an excess of the
 +
                                product. </p>
  
 +
                            <h2>Is Sortase A7M able to attach cargo to P22 coat protein?</h2>
  
<p>
 
    We performed the linking reaction with CP-LPETGG and GGGG-mCherry as substrates and applied them to an SDS-PAGE.
 
    We saw products at the expected size (28&nbsp;kDa + 49&nbsp;kDa = 77&nbsp;kDa) thus the requirement is fulfilled. However,
 
    a lot of additional bands appeared that we did not expect. These bands also appeared when only Sortase&nbsp;A7M and CP were mixed.
 
</p>
 
  
<img class="img-fluid center"
 
        src="https://2019.igem.org/wiki/images/1/1d/T--TU_Darmstadt--EnzymeSubstrate1.png" style="max-width:50%" />
 
        </a>
 
  
 +
                            <p>
 +
                                We performed the linking reaction with CP-LPETGG and GGGG-mCherry as substrates and
 +
                                applied them to an SDS-PAGE.
 +
                                We saw products at the expected size (28&nbsp;kDa + 49&nbsp;kDa = 77&nbsp;kDa) thus the
 +
                                requirement is fulfilled. However,
 +
                                a lot of additional bands appeared that we did not expect. These bands also appeared
 +
                                when only Sortase&nbsp;A7M and CP were mixed.
 +
                            </p>
  
<img class="img-fluid center"
+
                            <img class="img-fluid center"
        src="https://2019.igem.org/wiki/images/7/76/T--TU_Darmstadt--Sortase7Mdiffprot.png" style="max-width:50%" />
+
                                src="https://2019.igem.org/wiki/images/1/1d/T--TU_Darmstadt--EnzymeSubstrate1.png"
        </a>
+
                                style="max-width:50%" />
 +
                            </a>
  
  
<p>
+
                            <img class="img-fluid center"
    <b>
+
                                src="https://2019.igem.org/wiki/images/7/76/T--TU_Darmstadt--Sortase7Mdiffprot.png"
    Figure 23: </b><p><b>a)</b> Sortase&nbsp;A7M band is at expected height (17.85&nbsp;kDa).  
+
                                style="max-width:50%" />
    The two negative controls containing only GGGG-mCherry (28&nbsp;kDa)
+
                            </a>
    and CP-LPETGG (49&nbsp;kDa) at the expected respective heights. <b>b)</b> Shown are sfGFP-SP and
+
    CP-LPETGG each incubated with both Sortase&nbsp;A7M and Sortase&nbsp;A5M.  
+
    Both gels display multimers when coat and a sortase variant are in a sample together.
+
</p>
+
  
<p>
 
    To investigate this issue, we had a look at the
 
    literature and found a matching description in the publication of Patterson
 
    et al.. They performed a similar experiment with P22 capsid proteins and observed
 
    the same multimers in their SDS-PAGEs
 
    </sup>
 
    . Comparing both SDS-PAGEs, we came to the following assumption:
 
</p>
 
<p>
 
    Because of the promiscuity of Sortase&nbsp;A7M to accept primary amines as substrates, as we discussed previously, the formation of CP multimers occurs, unspecifically catalyzed by Sortase&nbsp;A7M.
 
</p>
 
<p>
 
    Parallel to these experiments, we successfully modified the exterior of pre-assembled VLPs <i>in vitro</i> (<a href="https://2019.igem.org/Team:TU_Darmstadt/Project/P22_VLP" target="_blank" >VLP assembly</a>). These modified VLPs were homogenous and overall correctly assembled. <b>Therefore, we conclude that the described multimer problem only occurs when Sortase&nbsp;A7M encounters free CP.</b>
 
</p>
 
       
 
  
<h2>Does methionine affect Sortase linking?</h2>
+
                            <p>
 +
                                <b>
 +
                                    Figure 23: </b>
 +
                                <p><b>a)</b> Sortase&nbsp;A7M band is at expected height (17.85&nbsp;kDa).
 +
                                    The two negative controls containing only GGGG-mCherry (28&nbsp;kDa)
 +
                                    and CP-LPETGG (49&nbsp;kDa) at the expected respective heights. <b>b)</b> Shown are
 +
                                    sfGFP-SP and
 +
                                    CP-LPETGG each incubated with both Sortase&nbsp;A7M and Sortase&nbsp;A5M.
 +
                                    Both gels display multimers when coat and a sortase variant are in a sample
 +
                                    together.
 +
                                </p>
  
<p>
+
                                <p>
    Sortase A7M preferably attaches N-terminal poly-G to C-terminal LPETGG. However,  
+
                                    To investigate this issue, we had a look at the
    the first amino acid of a protein is methionine (to be specific, formylmethionine in bacteria).
+
                                    literature and found a matching description in the publication of Patterson
    For our constructs that possess N-terminal polyG-tags, we have to ask ourselves the question: If the initial
+
                                    et al.. They performed a similar experiment with P22 capsid proteins and observed
    methionines are not cleaved off after the proteins have been produced, will this interfere with the Sortase reaction? 
+
                                    the same multimers in their SDS-PAGEs
</p>
+
                                    </sup>
<p>  
+
                                    . Comparing both SDS-PAGEs, we came to the following assumption:
    To investigate this, we cloned and purified another protein: TVMVsite-GGGG-mCherry. This protein can be treated with TVMV-protease,
+
                                </p>
    leading to *GGGG-mCherry. This *GGGG-mCherry was then compared to (M)GGGG-mCherry we used in all previous assays.  
+
                                <p>
</p>
+
                                    Because of the promiscuity of Sortase&nbsp;A7M to accept primary amines as
 +
                                    substrates, as we discussed previously, the formation of CP multimers occurs,
 +
                                    unspecifically catalyzed by Sortase&nbsp;A7M.
 +
                                </p>
 +
                                <p>
 +
                                    Parallel to these experiments, we successfully modified the exterior of
 +
                                    pre-assembled VLPs <i>in vitro</i> (<a
 +
                                        href="https://2019.igem.org/Team:TU_Darmstadt/Project/P22_VLP"
 +
                                        target="_blank">VLP assembly</a>). These modified VLPs were homogenous and
 +
                                    overall correctly assembled. <b>Therefore, we conclude that the described multimer
 +
                                        problem only occurs when Sortase&nbsp;A7M encounters free CP.</b>
 +
                                </p>
  
<p>
 
    To investigate this, we cloned and purified two other proteins: <b>TVMVsite-GGGG-mCherry</b> and <b>TEVsite-GGGG-sfGFP</b>.
 
    Then we treated these proteins with the respective proteases, resulting in *GGGG-mCherry and *GGGG-sfGFP.
 
    Following this *GGGG-mCherry was then compared to (M)GGGG-mCherry which we used in all previous assays.
 
    Assays were also conducted on <b>Fig.&nbsp;24</b> the processed *GGGG-sfGFP substrate.
 
    <b>Fig.&nbsp;24</b> confirmed our assumptions that the unprocessed substrate cannot be linked to the sorting motif via Sortase&nbsp;A7M.
 
    Subsequently, *GGGG-sfGFP (after protease digest) demonstrate successful linkage via sortase-mediated ligation.
 
</p>
 
<p>
 
    Due to these findings we modified our VLPs with
 
    <a href="https://2019.igem.org/Team:TU_Darmstadt/Project/VLP_Modification" target="_blank" >*GGGG-sfGFP</a>.
 
</p>
 
  
<img class="img-fluid center"
+
                                <h2>Does methionine affect Sortase linking?</h2>
        src="https://2019.igem.org/wiki/images/d/d4/T--TU_Darmstadt--comparison_cleaved_uncleaved_sfGFP.png" style="max-width:70%" />
+
        </a>
+
        <div class="caption">
+
          <p>
+
            <b>
+
              Figure 24 :
+
            </b>
+
            Sortase-mediated ligation of TAMRA-LPETG and
+
            GGGG-sfGFP (with TEV cleavage site) one cut with
+
            TEV protease and one not. The sample with the unprocessed
+
            substrate shows no increase in RFU. In contrast the processed
+
            substrate shows a clear increase in delta RFU. After 90 min
+
            the reverse reaction begins.
+
            </p>
+
        </div>
+
  
 +
                                <p>
 +
                                    Sortase A7M preferably attaches N-terminal poly-G to C-terminal LPETGG. However,
 +
                                    the first amino acid of a protein is methionine (to be specific, formylmethionine in
 +
                                    bacteria).
 +
                                    For our constructs that possess N-terminal polyG-tags, we have to ask ourselves the
 +
                                    question: If the initial
 +
                                    methionines are not cleaved off after the proteins have been produced, will this
 +
                                    interfere with the Sortase reaction?
 +
                                </p>
 +
                                <p>
 +
                                    To investigate this, we cloned and purified another protein: TVMVsite-GGGG-mCherry.
 +
                                    This protein can be treated with TVMV-protease,
 +
                                    leading to *GGGG-mCherry. This *GGGG-mCherry was then compared to (M)GGGG-mCherry we
 +
                                    used in all previous assays.
 +
                                </p>
  
<p>
+
                                <p>
    We performed FRET-assays with TAMRA-LPETG and either of the following reaction partners:
+
                                    To investigate this, we cloned and purified two other proteins:
</p>
+
                                    <b>TVMVsite-GGGG-mCherry</b> and <b>TEVsite-GGGG-sfGFP</b>.
<ul>
+
                                    Then we treated these proteins with the respective proteases, resulting in
    <li>(M)GGGG-mCherry, a protein sample that might still carry an N-terminal methionine</li>
+
                                    *GGGG-mCherry and *GGGG-sfGFP.
    <li>*GGGG-mCherry that does not carry any additional N-terminal residue</li>
+
                                    Following this *GGGG-mCherry was then compared to (M)GGGG-mCherry which we used in
</ul>
+
                                    all previous assays.
<p>
+
                                    Assays were also conducted on <b>Fig.&nbsp;24</b> the processed *GGGG-sfGFP
    Before the FRET-assay was started, we adjusted the mCherry-concentrations of both fluorescent protein solutions to the same level. To do so, we diluted them until both showed the same fluorescence at 610 nm.
+
                                    substrate.
</p>
+
                                    <b>Fig.&nbsp;24</b> confirmed our assumptions that the unprocessed substrate cannot
 +
                                    be linked to the sorting motif via Sortase&nbsp;A7M.
 +
                                    Subsequently, *GGGG-sfGFP (after protease digest) demonstrate successful linkage via
 +
                                    sortase-mediated ligation.
 +
                                </p>
 +
                                <p>
 +
                                    Due to these findings we modified our VLPs with
 +
                                    <a href="https://2019.igem.org/Team:TU_Darmstadt/Project/VLP_Modification"
 +
                                        target="_blank">*GGGG-sfGFP</a>.
 +
                                </p>
  
<img class="img-fluid center"
+
                                <img class="img-fluid center"
        src="https://2019.igem.org/wiki/images/5/5d/T--TU_Darmstadt--Hannah1.png" style="max-width:60%" />
+
                                    src="https://2019.igem.org/wiki/images/d/d4/T--TU_Darmstadt--comparison_cleaved_uncleaved_sfGFP.png"
        </a>
+
                                    style="max-width:70%" />
 +
                                </a>
 +
                                <div class="caption">
 +
                                    <p>
 +
                                        <b>
 +
                                            Figure 24 :
 +
                                        </b>
 +
                                        Sortase-mediated ligation of TAMRA-LPETG and GGGG-sfGFP (with TEV
 +
                                cleavage site) one cut with TEV protease and one not. The sample with the unprocessed
 +
                                substrate shows no increase in RFU. In contrast the processed substrate shows a clear
 +
                                increase in ΔRFU. After 90 min the reverse reaction begins.The ΔRFU refers to the
 +
                                respective negative control without each sortase at 514 nm. The mean ΔRFU value of the
 +
                                duplicates was normalized to zero for better visualization.
 +
                                    </p>
 +
                                </div>
  
  
 +
                                <p>
 +
                                    We performed FRET-assays with TAMRA-LPETG and either of the following reaction
 +
                                    partners:
 +
                                </p>
 +
                                <ul>
 +
                                    <li>(M)GGGG-mCherry, a protein sample that might still carry an N-terminal
 +
                                        methionine</li>
 +
                                    <li>*GGGG-mCherry that does not carry any additional N-terminal residue</li>
 +
                                </ul>
 +
                                <p>
 +
                                    Before the FRET-assay was started, we adjusted the mCherry-concentrations of both
 +
                                    fluorescent protein solutions to the same level. To do so, we diluted them until
 +
                                    both showed the same fluorescence at 610 nm.
 +
                                </p>
  
<img class="img-fluid center"
+
                                <img class="img-fluid center"
        src="https://2019.igem.org/wiki/images/1/17/T--TU_Darmstadt--Hannah2.jpeg" style="max-width:60%" />
+
                                    src="https://2019.igem.org/wiki/images/5/5d/T--TU_Darmstadt--Hannah1.png"
        </a>
+
                                    style="max-width:60%" />
 +
                                </a>
  
  
<p>
 
    <b>
 
        Figure 25:
 
    </b>
 
    FRET of the sortase reaction connecting
 
    TAMRA-LPETG and GGGG-sfGFP mediated by Sortase A7M. The concentration
 
    of the Sortase A7M was kept at the same level why the concentration of sfGFP
 
    was either 7.8&nbsp;mM or 1&nbsp;mM. The graphs show that the reverse reaction
 
    happens earlier if if the GGGG-substrate concentration is lower.
 
</p>
 
  
<p>
+
                                <img class="img-fluid center"
    Strikingly, only the (M)GGGG-mCherry construct showed a clear decrease in delta RFU after the maximum delta RFU was reached (at about 160 min).  
+
                                    src="https://2019.igem.org/wiki/images/1/17/T--TU_Darmstadt--Hannah2.jpeg"
</p>
+
                                    style="max-width:60%" />
 +
                                </a>
  
<img class="img-fluid center"
 
        src="https://2019.igem.org/wiki/images/f/f4/T--TU_Darmstadt--Hannah3.png" style="max-width:70%" />
 
        </a>
 
        <div class="caption">
 
          <p>
 
            <b>
 
              Figure 26 :
 
            </b>
 
            Sortase-mediated ligation of TAMRA-LPETG and GGGG-mCherry one
 
            cut with TVMV protease and one with a methionin infront of the GGGG-tag.
 
            As visible the reverse reaction happens earlier if the methionine is not cleaved of the GGGG-tag.
 
            The delta RFU is referring to the negative controls without Sortase&nbsp;A7M.
 
            </p>
 
        </div>
 
  
<p>
+
                                <p>
    We assume the following: Although we adjusted the overall mCherry concentration by fluorescence, we cannot determine the absolute amount of <b>M</b>GGGG-mCherry in the (M)GGGG-mCherry sample. However, if this amount was relatively high, the <b>effective substrate concentration</b> that could enter the sortase reaction would be low. That is because MGGGG is a worse sortase substrate than GGGG – if any at all. If we furthermore consider that a low substrate concentration correlates with a faster reverse reaction, we can explain the observed decrease in delta RFU for the (M)GGGG-mCherry sample that contrasts the delta RFU trend of the *GGGG-mCherry sample.  
+
                                    <b>
</p>
+
                                        Figure 25:
<p>
+
                                    </b>
    On this basis we can assume that a certain, yet unknown portion of the (M)GGGG-mCherry sample still carries an N-terminal methionine.
+
                                    FRET of the sortase reaction connecting TAMRA-LPETG and GGGG-sfGFP mediated by Sortase A7M. The
</p>
+
                                    concentration of the Sortase A7M and TAMRA-LPETG was kept at the same level why the
<p>
+
                                    concentration of sfGFP was either 10,7&nbsp;µM or 1,4&nbsp;µM. The graphs show that the reverse
    These FRET-assays let us assume that methionine disturbs or at least interferes with the sortase reaction mechanism. Indeed, our <b>modeling</b> suggests that <b>methionine affects the interaction of polyG</b> and the flexible loop near the active site of Sortase A7M.<a href="https://2019.igem.org/Team:TU_Darmstadt/Model" target="_blank"> Click here</a> if you want to know more about our modeling results!
+
                                    reaction happens earlier if the GGGG-substrate concentration is lower. The ΔRFU refers to the
</p>
+
                                    respective negative control without each sortase at 514 nm. The mean ΔRFU value of the
 +
                                    duplicates was normalized to zero for better visualization.
 +
                                </p>
  
<p>  
+
                                <p>
    This strengthens our hypothesis: If there is any amino acid in front of the poly-glycine sequence, substrate binding to Sortase A7M is negatively influenced.
+
                                    Strikingly, only the (M)GGGG-mCherry construct showed a clear decrease in delta RFU
</p>
+
                                    after the maximum delta RFU was reached (at about 160 min).
               
+
                                </p>
  
 +
                                <img class="img-fluid center"
 +
                                    src="https://2019.igem.org/wiki/images/f/f4/T--TU_Darmstadt--Hannah3.png"
 +
                                    style="max-width:70%" />
 +
                                </a>
 +
                                <div class="caption">
 +
                                    <p>
 +
                                        <b>
 +
                                            Figure 26 :
 +
                                        </b>
 +
                                        Sortase-mediated ligation of TAMRA-LPETG and GGGG-mCherry one cut with TVMV protease and one
 +
                        with a methionine infront of the GGGG-tag. As visible the reverse reaction happens earlier if
 +
                        the methionine is not cleaved of the GGGG-tag. The ΔRFU is referring to the negative controls
 +
                        without Sortase&nbsp;A7M at 570 nm. The mean ΔRFU value of the tripicates was normalized to zero
 +
                        for better visualization.
 +
                                    </p>
 +
                                </div>
  
<h1>Modeling</h1>
+
                                <p>
 +
                                    We assume the following: Although we adjusted the overall mCherry concentration by
 +
                                    fluorescence, we cannot determine the absolute amount of <b>M</b>GGGG-mCherry in the
 +
                                    (M)GGGG-mCherry sample. However, if this amount was relatively high, the
 +
                                    <b>effective substrate concentration</b> that could enter the sortase reaction would
 +
                                    be low. That is because MGGGG is a worse sortase substrate than GGGG – if any at
 +
                                    all. If we furthermore consider that a low substrate concentration correlates with a
 +
                                    faster reverse reaction, we can explain the observed decrease in delta RFU for the
 +
                                    (M)GGGG-mCherry sample that contrasts the delta RFU trend of the *GGGG-mCherry
 +
                                    sample.
 +
                                </p>
 +
                                <p>
 +
                                    On this basis we can assume that a certain, yet unknown portion of the
 +
                                    (M)GGGG-mCherry sample still carries an N-terminal methionine.
 +
                                </p>
 +
                                <p>
 +
                                    These FRET-assays let us assume that methionine disturbs or at least interferes with
 +
                                    the sortase reaction mechanism. Indeed, our <b>modeling</b> suggests that
 +
                                    <b>methionine affects the interaction of polyG</b> and the flexible loop near the
 +
                                    active site of Sortase A7M.<a href="https://2019.igem.org/Team:TU_Darmstadt/Model"
 +
                                        target="_blank"> Click here</a> if you want to know more about our modeling
 +
                                    results!
 +
                                </p>
  
<h3>Introduction</h3>
+
                                <p>
 +
                                    This strengthens our hypothesis: If there is any amino acid in front of the
 +
                                    poly-glycine sequence, substrate binding to Sortase A7M is negatively influenced.
 +
                                </p>
  
<p>
 
    In synthetic biology, theoretical models are often used to gain insights, predict and
 
    improve
 
    experiments. In our project we are modifying Virus-like particles (VLPs) by attaching
 
    proteins to the
 
    surface of the P22 capsid
 
    <!-- Link zum Background oder Project overview  --> through a linker. The linking is
 
    catalyzed using
 
    the enzyme Sortase A7M, which is a calcium-independent mutant of the wild type Sortase A
 
    <!-- Link zum Sortase Background --> from <i>Staphylococcus aureus</i>. We performed
 
    modeling to predict the unknown structure of the
 
    Sortase A7M, to improve the linker between proteins and therefore optimizing the
 
    modification
 
    efficiency. <br>
 
  
    Here <i>Rosetta Comparative Modeling</i> was performed to predict the structure of
 
    Sortase A7M. The generated structure was characterized in terms of the molecular
 
    mechanisms and binding affinities of ligand peptides using molecular dynamics 
 
    and docking simulations.
 
</p>
 
  
<h2>Structure determination</h2>
+
                                <h1>Modeling</h1>
  
<p>
+
                                <h3>Introduction</h3>
    <i>In silico</i> modeling and simulation of proteins requires a 3D structure,
+
    which can be
+
    obtained from the <a href="https://www.rcsb.org/" target="_blank">RCSB Protein
+
    Data
+
    Bank</a>. However, if no 3D structures are annotated, as it is the case with
+
    sortase
+
    A7M, the structure has to be determined by other means. The structure prediction
+
    of sortase A7M was done using two different approaches.
+
</p>
+
  
<h2>RosettaCM</h2>
+
                                <p>
 +
                                    In synthetic biology, theoretical models are often used to gain insights, predict
 +
                                    and
 +
                                    improve
 +
                                    experiments. In our project we are modifying Virus-like particles (VLPs) by
 +
                                    attaching
 +
                                    proteins to the
 +
                                    surface of the P22 capsid
 +
                                    <!-- Link zum Background oder Project overview  --> through a linker. The linking is
 +
                                    catalyzed using
 +
                                    the enzyme Sortase A7M, which is a calcium-independent mutant of the wild type
 +
                                    Sortase A
 +
                                    <!-- Link zum Sortase Background --> from <i>Staphylococcus aureus</i>. We performed
 +
                                    modeling to predict the unknown structure of the
 +
                                    Sortase A7M, to improve the linker between proteins and therefore optimizing the
 +
                                    modification
 +
                                    efficiency. <br>
  
<h3>Results</h3>
+
                                    Here <i>Rosetta Comparative Modeling</i> was performed to predict the structure of
 +
                                    Sortase A7M. The generated structure was characterized in terms of the molecular
 +
                                    mechanisms and binding affinities of ligand peptides using molecular dynamics
 +
                                    and docking simulations.
 +
                                </p>
  
<p>
+
                                <h2>Structure determination</h2>
    The simulation yielded 15,000 structures which have been compared using the
+
    Rosetta scoring functions (talaris2013).
+
    <!-- scoring -->
+
    From the 15,000 structures generated, we inspected the ten best scoring
+
    structures.
+
</p>
+
  
<p>
+
                                <p>
    As can be seen in <b>Fig. 27</b> 27, the most prominent differences can
+
                                    <i>In silico</i> modeling and simulation of proteins requires a 3D structure,
    be found in the regions close to the N- and C-terminus. As
+
                                    which can be
    fluctuations in those
+
                                    obtained from the <a href="https://www.rcsb.org/" target="_blank">RCSB Protein
    regions are not untypical, we decided to use the best scoring
+
                                        Data
    structure, candidate S_14771 (<b>Fig.</b> 28), as the input for the
+
                                        Bank</a>. However, if no 3D structures are annotated, as it is the case with
    simulations to follow.
+
                                    sortase
</p>
+
                                    A7M, the structure has to be determined by other means. The structure prediction
 +
                                    of sortase A7M was done using two different approaches.
 +
                                </p>
  
<img class="img-fluid center"
+
                                <h2>RosettaCM</h2>
        src="https://2019.igem.org/wiki/images/4/40/T--TU_Darmstadt--top10_corporate.png" style="max-width:40%" />
+
        </a>
+
        <div class="caption">
+
          <p>
+
            <b>
+
              Figure 27 :
+
            </b>
+
            The structural alignment of the ten best scoring
+
            sortase structures
+
            displaying minor differences with the exception of the C- and
+
            N-terminal
+
            regions. N- and C-terminal regions tend to show strong
+
            fluctuations, thus it is
+
            unsurprising to find the terminal regions to be unaligned
+
            </p>
+
        </div>
+
  
 +
                                <h3>Results</h3>
  
<img class="img-fluid center"
+
                                <p>
        src="https://2019.igem.org/wiki/images/b/b3/T--TU_Darmstadt--s14771.gif" style="max-width:40%" />
+
                                    The simulation yielded 15,000 structures which have been compared using the
        </a>
+
                                    Rosetta scoring functions (talaris2013).
        <div class="caption">
+
                                    <!-- scoring -->
          <p>
+
                                    From the 15,000 structures generated, we inspected the ten best scoring
            <b>
+
                                    structures.
              Figure 28 :
+
                                </p>
            </b>
+
            Sortase A7M candidate S_14771 created through RosettaCM.
+
            </p>
+
        </div>
+
  
        <p> In order to evaluate the secondary structure of the Sortase A7M
+
                                <p>
            candidate S_14771 a Ramachandran plot has been created and compared to
+
                                    As can be seen in <b>Fig. 27</b> 27, the most prominent differences can
            the five sortases used as input for the comparitive modeling.
+
                                    be found in the regions close to the N- and C-terminus. As
        </p>
+
                                    fluctuations in those
 +
                                    regions are not untypical, we decided to use the best scoring
 +
                                    structure, candidate S_14771 (<b>Fig.</b> 28), as the input for the
 +
                                    simulations to follow.
 +
                                </p>
  
<img class="img-fluid center"
+
                                <img class="img-fluid center"
        src="https://2019.igem.org/wiki/images/2/28/T--TU_Darmstadt--ramachandran_s14711.png" style="max-width:40%" />
+
                                    src="https://2019.igem.org/wiki/images/4/40/T--TU_Darmstadt--top10_corporate.png"
        </a>
+
                                    style="max-width:40%" />
 +
                                </a>
 +
                                <div class="caption">
 +
                                    <p>
 +
                                        <b>
 +
                                            Figure 27 :
 +
                                        </b>
 +
                                        The structural alignment of the ten best scoring
 +
                                        sortase structures
 +
                                        displaying minor differences with the exception of the C- and
 +
                                        N-terminal
 +
                                        regions. N- and C-terminal regions tend to show strong
 +
                                        fluctuations, thus it is
 +
                                        unsurprising to find the terminal regions to be unaligned
 +
                                    </p>
 +
                                </div>
  
  
<img class="img-fluid center"
+
                                <img class="img-fluid center"
        src="https://2019.igem.org/wiki/images/e/ee/T--TU_Darmstadt--ramachandran_five_sortases.png" style="max-width:40%" />
+
                                    src="https://2019.igem.org/wiki/images/b/b3/T--TU_Darmstadt--s14771.gif"
        </a>
+
                                    style="max-width:40%" />
 +
                                </a>
 +
                                <div class="caption">
 +
                                    <p>
 +
                                        <b>
 +
                                            Figure 28 :
 +
                                        </b>
 +
                                        Sortase A7M candidate S_14771 created through RosettaCM.
 +
                                    </p>
 +
                                </div>
  
 +
                                <p> In order to evaluate the secondary structure of the Sortase A7M
 +
                                    candidate S_14771 a Ramachandran plot has been created and compared to
 +
                                    the five sortases used as input for the comparitive modeling.
 +
                                </p>
  
<img class="img-fluid center"
+
                                <img class="img-fluid center"
        src="https://2019.igem.org/wiki/images/7/73/T--TU_Darmstadt--Comp_Ramachandran.PNG" style="max-width:40%" />
+
                                    src="https://2019.igem.org/wiki/images/2/28/T--TU_Darmstadt--ramachandran_s14711.png"
        </a>
+
                                    style="max-width:40%" />
       
+
                                </a>
        <p> <b>Figure 29</b>: The Ramachandran plot of randomly sampled proteins
+
            and the input structures of the <i>comparative modeling</i> show
+
            similar secondary structures. Secondary structure analysis of both
+
            sortase candidates reveals absence
+
            of secondary structures for the ML candidate. This is not the case
+
            with candidate S_14771 as the Ramachandran plot shows all relevant
+
            structures.
+
        </p>
+
  
        <p>
 
                The Ramachandran plot (<b>Fig.&nbsp;29</b>) showing &alpha;-helices and
 
                &beta;-sheets is a
 
                strong indicator of a successful structure determination, as those
 
                secondary
 
                structures are crucial for the functionality of sortases.
 
        </p>
 
  
<h3>Conclusion</h3>
+
                                <img class="img-fluid center"
 +
                                    src="https://2019.igem.org/wiki/images/e/ee/T--TU_Darmstadt--ramachandran_five_sortases.png"
 +
                                    style="max-width:40%" />
 +
                                </a>
  
<p>
 
    We used monte-carlo simulations
 
    to determine the structure of the mutated transpeptidase Sortase A7M.
 
    As a first investigation of the secondary structure a Ramachandran plot of
 
    candidate <i>S_14771</i> was made. The plot showing secondary structures was a first indicator
 
    of successful structure prediction.
 
    The approach, using <i>Rosetta Comparative Modeling</i>, yielded
 
    15,000
 
    structures scored with the talaris2013 scoring function. The ten
 
    best structures
 
    were aligned and exhibited almost identical secondary structures
 
    (<b>Fig. 27</b>).
 
    The greatest structural differences are present in the N- and
 
    C-terminal regions. Since terminal regions tend to fluctuate more strongly than
 
    non-terminal segments of the protein, we deemed those fluctuations
 
    non-relevant for the proteins functionality.
 
    <br>
 
    Being the best scoring candidate, structure S_14771 was analyzed
 
    structurally using a Ramachandran plot (<b>Fig. 29</b>). The plot shows all the
 
    relevant and typical structures sortases exhibit and serves as an indicator for
 
    a successful structure prediction.
 
    <br>
 
    In the steps to follow, a molecular dynamics (MD)
 
    simulation was performed on both structures.
 
</p>
 
  
<h2>Molecular dynamics</h2>
+
                                <img class="img-fluid center"
 +
                                    src="https://2019.igem.org/wiki/images/7/73/T--TU_Darmstadt--Comp_Ramachandran.PNG"
 +
                                    style="max-width:40%" />
 +
                                </a>
  
 +
                                <p> <b>Figure 29</b>: The Ramachandran plot of randomly sampled proteins
 +
                                    and the input structures of the <i>comparative modeling</i> show
 +
                                    similar secondary structures. Secondary structure analysis of both
 +
                                    sortase candidates reveals absence
 +
                                    of secondary structures for the ML candidate. This is not the case
 +
                                    with candidate S_14771 as the Ramachandran plot shows all relevant
 +
                                    structures.
 +
                                </p>
  
<h3>Results</h3>
+
                                <p>
 +
                                    The Ramachandran plot (<b>Fig.&nbsp;29</b>) showing &alpha;-helices and
 +
                                    &beta;-sheets is a
 +
                                    strong indicator of a successful structure determination, as those
 +
                                    secondary
 +
                                    structures are crucial for the functionality of sortases.
 +
                                </p>
  
<p>
+
                                <h3>Conclusion</h3>
    The first possible indicators of a stable protein structure are converging
+
    root-mean-square deviation (RMSD),
+
    small root-mean-square
+
    fluctuation (RMSF) values
+
    as well as converging radii of gyration. Using the Python software package and
+
    the module Biotite we calculated
+
    these quantities and plotted the result for candidate S_14771.
+
</p>
+
  
<img class="img-fluid center"
+
                                <p>
        src="https://2019.igem.org/wiki/images/4/4f/T--TU_Darmstadt--rmsd_s14771.png" style="max-width:40%" />
+
                                    We used monte-carlo simulations
        </a>
+
                                    to determine the structure of the mutated transpeptidase Sortase A7M.
        <div class="caption">
+
                                    As a first investigation of the secondary structure a Ramachandran plot of
          <p>
+
                                    candidate <i>S_14771</i> was made. The plot showing secondary structures was a first
            <b>
+
                                    indicator
              Figure 30 :
+
                                    of successful structure prediction.
            </b>  
+
                                    The approach, using <i>Rosetta Comparative Modeling</i>, yielded
            The RMSD is one of three main indicators of a stable
+
                                    15,000
            protein structure of the MD simulation of
+
                                    structures scored with the talaris2013 scoring function. The ten
            S_14771 over the period of 200,000 ps. As time progressed the RMSD
+
                                    best structures
            increased with a smaller slope.
+
                                    were aligned and exhibited almost identical secondary structures
            The value stabilizes at a time of 110,000 ps and fluctuated around the
+
                                    (<b>Fig. 27</b>).
            value of 6 &#8491;.
+
                                    The greatest structural differences are present in the N- and
            </p>
+
                                    C-terminal regions. Since terminal regions tend to fluctuate more strongly than
        </div>
+
                                    non-terminal segments of the protein, we deemed those fluctuations
 +
                                    non-relevant for the proteins functionality.
 +
                                    <br>
 +
                                    Being the best scoring candidate, structure S_14771 was analyzed
 +
                                    structurally using a Ramachandran plot (<b>Fig. 29</b>). The plot shows all the
 +
                                    relevant and typical structures sortases exhibit and serves as an indicator for
 +
                                    a successful structure prediction.
 +
                                    <br>
 +
                                    In the steps to follow, a molecular dynamics (MD)
 +
                                    simulation was performed on both structures.
 +
                                </p>
  
 +
                                <h2>Molecular dynamics</h2>
  
<img class="img-fluid center"
 
        src="https://2019.igem.org/wiki/images/9/94/T--TU_Darmstadt--gyration_s14771.png" style="max-width:40%" />
 
        </a>
 
        <div class="caption">
 
          <p>
 
            <b>
 
              Figure 31 :
 
            </b>
 
            The prominent fluctuations of the residues from ranges
 
            105 to 115 might
 
            indicate a binding site or another form of functional structure. The
 
            radius of gyration, just as
 
            the RMSD <b>Fig. 30</b>, stabilizes around a simulation time of of 110,000 ps
 
            and converges towards a value of
 
            16.7 &#8491;.
 
            </p>
 
        </div>
 
  
 +
                                <h3>Results</h3>
  
 +
                                <p>
 +
                                    The first possible indicators of a stable protein structure are converging
 +
                                    root-mean-square deviation (RMSD),
 +
                                    small root-mean-square
 +
                                    fluctuation (RMSF) values
 +
                                    as well as converging radii of gyration. Using the Python software package and
 +
                                    the module Biotite we calculated
 +
                                    these quantities and plotted the result for candidate S_14771.
 +
                                </p>
  
 +
                                <img class="img-fluid center"
 +
                                    src="https://2019.igem.org/wiki/images/4/4f/T--TU_Darmstadt--rmsd_s14771.png"
 +
                                    style="max-width:40%" />
 +
                                </a>
 +
                                <div class="caption">
 +
                                    <p>
 +
                                        <b>
 +
                                            Figure 30 :
 +
                                        </b>
 +
                                        The RMSD is one of three main indicators of a stable
 +
                                        protein structure of the MD simulation of
 +
                                        S_14771 over the period of 200,000 ps. As time progressed the RMSD
 +
                                        increased with a smaller slope.
 +
                                        The value stabilizes at a time of 110,000 ps and fluctuated around the
 +
                                        value of 6 &#8491;.
 +
                                    </p>
 +
                                </div>
  
<img class="img-fluid center"
 
        src="https://2019.igem.org/wiki/images/f/f4/T--TU_Darmstadt--rmsf_s14771.png" style="max-width:40%" />
 
        </a>
 
        <div class="caption">
 
          <p>
 
            <b>
 
              Figure 32 :
 
            </b>
 
            The fluctuations
 
            (RMSF) of most residues appear insignificant compared to the first, the
 
            last residues and
 
            the residues close to residue 110 . Typically the N- and C-terminus tend
 
            to fluctuate more intensively due to the lack of
 
            stabilizing structures. The prominent fluctuations in the range of
 
            residue 105 to 115
 
            can indicate a binding site or another form of functional structure.
 
            </p>
 
        </div>
 
  
 +
                                <img class="img-fluid center"
 +
                                    src="https://2019.igem.org/wiki/images/9/94/T--TU_Darmstadt--gyration_s14771.png"
 +
                                    style="max-width:40%" />
 +
                                </a>
 +
                                <div class="caption">
 +
                                    <p>
 +
                                        <b>
 +
                                            Figure 31 :
 +
                                        </b>
 +
                                        The prominent fluctuations of the residues from ranges
 +
                                        105 to 115 might
 +
                                        indicate a binding site or another form of functional structure. The
 +
                                        radius of gyration, just as
 +
                                        the RMSD <b>Fig. 30</b>, stabilizes around a simulation time of of 110,000 ps
 +
                                        and converges towards a value of
 +
                                        16.7 &#8491;.
 +
                                    </p>
 +
                                </div>
  
  
<p>
 
    Typical RMSDs and radii of gyration converge towards a value dependent on the
 
    size of the
 
    protein. Convergence of those quantities can be interpreted as a stable state of
 
    the protein
 
    structure. As it can be seen in <b>Fig. 30</b> and <b>Fig. 31</b> both the RMSD and the radius of
 
    gyration
 
    stabilize at the same time as the simulation reaches 110,000 ps (110 ns),
 
    suggesting a now
 
    stabilized structure of candidate S_14771 solvated in water. Another indicator
 
    of a
 
    functional protein is the RMSF. Instead of being averaged over all atoms, the
 
    RMSF is
 
    averaged over time with respect to each amino acid. It provides insights in both
 
    protein
 
    stability and functionality. Fig <b>Fig. 32</b> reveals the RMSF of residues 105 to 115 to
 
    be
 
    significantly higher than that of other residues. This hints at the presence of
 
    a
 
    functional unit along these residues. As commented on in the section
 
    describing our structure prediction approaches, the N-
 
    and C-terminal regions tend to fluctuate more strongly as a result of the
 
    absence of
 
    stabilizing structures.
 
</p>
 
  
<p>
 
    To further analyse the potential binding site, we performed a
 
    <i>Principle Component Analysis</i>.
 
</p>
 
  
<h3>Principle component analysis</h3>
+
                                <img class="img-fluid center"
 +
                                    src="https://2019.igem.org/wiki/images/f/f4/T--TU_Darmstadt--rmsf_s14771.png"
 +
                                    style="max-width:40%" />
 +
                                </a>
 +
                                <div class="caption">
 +
                                    <p>
 +
                                        <b>
 +
                                            Figure 32 :
 +
                                        </b>
 +
                                        The fluctuations
 +
                                        (RMSF) of most residues appear insignificant compared to the first, the
 +
                                        last residues and
 +
                                        the residues close to residue 110 . Typically the N- and C-terminus tend
 +
                                        to fluctuate more intensively due to the lack of
 +
                                        stabilizing structures. The prominent fluctuations in the range of
 +
                                        residue 105 to 115
 +
                                        can indicate a binding site or another form of functional structure.
 +
                                    </p>
 +
                                </div>
  
<p>
 
    To analyze our system further Principle Component Analysis (PCA) was performed
 
    using GROMACS. By applying PCA to a protein it is possible to gain insights into the relevant
 
    vibrational motions and thereby the physical mechanism of the protein.
 
</p>
 
  
  
<img class="img-fluid center"
+
                                <p>
            src="https://2019.igem.org/wiki/images/d/db/T--TU_Darmstadt--modes_s14771.gif"
+
                                    Typical RMSDs and radii of gyration converge towards a value dependent on the
            style="width:40%">
+
                                    size of the
        <p><b>Animation 33: </b> A Principle Component Analysis of a fast (blue) and a
+
                                    protein. Convergence of those quantities can be interpreted as a stable state of
            slow (red) mode showing the most prominent movements of the C&alpha;-chain
+
                                    the protein
            of candidate S_14771. Both modes show movement of the &beta;6&#47;&beta;7
+
                                    structure. As it can be seen in <b>Fig. 30</b> and <b>Fig. 31</b> both the RMSD and
            loop consisting of residues 105 to 115 towards the active site . Thus we can
+
                                    the radius of
            assume that the closing &beta;6&#47;&beta;7 loop is involved in the reaction
+
                                    gyration
            mechanism.  
+
                                    stabilize at the same time as the simulation reaches 110,000 ps (110 ns),
        </p>
+
                                    suggesting a now
 +
                                    stabilized structure of candidate S_14771 solvated in water. Another indicator
 +
                                    of a
 +
                                    functional protein is the RMSF. Instead of being averaged over all atoms, the
 +
                                    RMSF is
 +
                                    averaged over time with respect to each amino acid. It provides insights in both
 +
                                    protein
 +
                                    stability and functionality. Fig <b>Fig. 32</b> reveals the RMSF of residues 105 to
 +
                                    115 to
 +
                                    be
 +
                                    significantly higher than that of other residues. This hints at the presence of
 +
                                    a
 +
                                    functional unit along these residues. As commented on in the section
 +
                                    describing our structure prediction approaches, the N-
 +
                                    and C-terminal regions tend to fluctuate more strongly as a result of the
 +
                                    absence of
 +
                                    stabilizing structures.
 +
                                </p>
  
<p>
+
                                <p>
    The results from the Principle Component Analysis of candidate S_14771
+
                                    To further analyse the potential binding site, we performed a
    (<b>Amination 33</b>) show a movement of the residues 105 to 115 towards the active
+
                                    <i>Principle Component Analysis</i>.
    site, supporting our theory that residues 105 to 115 are important for the
+
                                </p>
    reaction mechanism. Since the most relevant eigenvector (red), which shows the most relevant
+
    movement of the sortase, moves further towards the active site, it is possible
+
    that the &beta;6&#47;&beta;7 loop either closes the binding site of the ligand
+
    peptides or even transports one peptide towards the other.
+
</p>
+
  
<h3>Conclusion</h3>
+
                                <h3>Principle component analysis</h3>
  
<p>
+
                                <p>
    Candidate S_14771 that was generated using <i>RosettaCM</i> appears to be a fitting candidate not
+
                                    To analyze our system further Principle Component Analysis (PCA) was performed
    only due to successful analyses, but also due to the residues of the active site being in close proximity.
+
                                    using GROMACS. By applying PCA to a protein it is possible to gain insights into the
    Not the RMSF but also Principle Component Analysis
+
                                    relevant
    indicate that residues 105 to 115 forming the &beta;6&#47;&beta;7 loop
+
                                    vibrational motions and thereby the physical mechanism of the protein.
    are crucial for the molecular mechanism of our model.
+
                                </p>
</p>
+
  
<h2>Docking</h2>
 
  
<p>
+
                                <img class="img-fluid center"
    Now that the binding site of the Sortase had been found, the peptide ligand
+
                                    src="https://2019.igem.org/wiki/images/d/db/T--TU_Darmstadt--modes_s14771.gif"
    needed to be inserted into the binding site to create a peptide-protein complex.
+
                                    style="width:40%">
    The procedure of choice
+
                                <p><b>Animation 33: </b> A Principle Component Analysis of a fast (blue) and a
    for the introduction of a ligand into the binding site of a protein is called
+
                                    slow (red) mode showing the most prominent movements of the C&alpha;-chain
    <i>docking</i>. In the
+
                                    of candidate S_14771. Both modes show movement of the &beta;6&#47;&beta;7
    following sections, we will present the protocol and methods we used as well as
+
                                    loop consisting of residues 105 to 115 towards the active site . Thus we can
    the results they yielded.
+
                                    assume that the closing &beta;6&#47;&beta;7 loop is involved in the reaction
</p>
+
                                    mechanism.
 +
                                </p>
  
<h3>Results</h3>
+
                                <p>
 +
                                    The results from the Principle Component Analysis of candidate S_14771
 +
                                    (<b>Amination 33</b>) show a movement of the residues 105 to 115 towards the active
 +
                                    site, supporting our theory that residues 105 to 115 are important for the
 +
                                    reaction mechanism. Since the most relevant eigenvector (red), which shows the most
 +
                                    relevant
 +
                                    movement of the sortase, moves further towards the active site, it is possible
 +
                                    that the &beta;6&#47;&beta;7 loop either closes the binding site of the ligand
 +
                                    peptides or even transports one peptide towards the other.
 +
                                </p>
  
<p>
+
                                <h3>Conclusion</h3>
    For sequences MGGGGPPPPPP(M-polyG), GGGGPPPPPP(polyG) and PPPPPPLPETGG(LPETGG)
+
    50,000 structures have been created and clustered.
+
    After the clustering the sample consisted of 100 structures of docked complexes.
+
</p>
+
  
<img class="img-fluid center"
+
                                <p>
        src="https://2019.igem.org/wiki/images/7/78/T--TU_Darmstadt--dock_lpetgg.png" style="max-width:40%" />
+
                                    Candidate S_14771 that was generated using <i>RosettaCM</i> appears to be a fitting
        </a>
+
                                    candidate not
        <div class="caption">
+
                                    only due to successful analyses, but also due to the residues of the active site
          <p>
+
                                    being in close proximity.
            <b>
+
                                    Not the RMSF but also Principle Component Analysis
              Figure 34 :
+
                                    indicate that residues 105 to 115 forming the &beta;6&#47;&beta;7 loop
            </b>  
+
                                    are crucial for the molecular mechanism of our model.
            The three best scoring structures (total score, interface
+
                                </p>
            score, reweighted score) of the LPETGG-tag are shown. Only two results are
+
            visible as the best reweighted score candidate is identical to the best
+
            interface score candidate. The reacting section of the LPETGG-tag namely
+
            glycine is colored yellow as is the active site. The glycin of both ligand
+
            peptides is facing the active site.
+
            </p>
+
        </div>
+
  
<p>
+
                                <h2>Docking</h2>
    Analysis of the scores has shown a similar score for all the three dockings. The
+
    best scoring results of the LPETGG docking show a tendency of the glycines to
+
    face the active site while also being in close proximity to the active site.
+
</p>
+
  
<img class="img-fluid center"
+
                                <p>
        src="https://2019.igem.org/wiki/images/8/8d/T--TU_Darmstadt--dock_polyg.png" style="max-width:40%" />
+
                                    Now that the binding site of the Sortase had been found, the peptide ligand
        </a>
+
                                    needed to be inserted into the binding site to create a peptide-protein complex.
        <div class="caption">
+
                                    The procedure of choice
          <p>
+
                                    for the introduction of a ligand into the binding site of a protein is called
            <b>
+
                                    <i>docking</i>. In the
              Figure 35:
+
                                    following sections, we will present the protocol and methods we used as well as
            </b>
+
                                    the results they yielded.
            The three best scoring structures (total score,
+
                                </p>
            interface score, reweighted score) of the polyG peptide are shown. Only
+
            two results are visible as the best reweighted score candidate is
+
            identical to the best interface score candidate. Instead of facing the
+
            active site (yellow) the reacting glycines (yellow) appear to interact
+
            with the &beta;6&#47;&beta;7 loop of the sortase.
+
            </p>
+
        </div>
+
  
<img class="img-fluid center"
+
                                <h3>Results</h3>
        src="https://2019.igem.org/wiki/images/9/92/T--TU_Darmstadt--dock_mpolyg.png" style="max-width:40%" />
+
        </a>
+
        <div class="caption">
+
          <p>
+
            <b>
+
              Figure 36:
+
            </b>
+
            The three best scoring structures (total score,
+
            interface score, reweighted score) of the poly-g peptide are shown. Only
+
            two results are visible as the best reweighted score candidate is
+
            identical to the best interface score candidate.
+
            Concerning the M-poly-G peptide no uniform directional orientation can
+
            be observed.
+
            The structure with the best interface score (light blue) is oriendted
+
            towards the loop while the structure with the best total/reweighted
+
            (dark blue) is oriented towards the &beta;-sheets.
+
            </p>
+
        </div>
+
  
<p>
+
                                <p>
    <b>Fig. 34</b> shows the docking result of the LPETGG peptide to
+
                                    For sequences MGGGGPPPPPP(M-polyG), GGGGPPPPPP(polyG) and PPPPPPLPETGG(LPETGG)
    the sortase. The results shown are the best scoring structures of the clustering
+
                                    50,000 structures have been created and clustered.
    with respect to the total score, interface score and reweighted score. As the
+
                                    After the clustering the sample consisted of 100 structures of docked complexes.
    best scoring structure is the same for the total score and the reweighted score
+
                                </p>
    only two peptides are shown. This also applies to <b>Fig. 35</b> and <b>Fig. 36</b>. For both
+
    results the reacting glycin residues (yellow) are facing the active site.
+
    Additionally, the same residues are in close proximity to the active site.
+
</p>
+
  
<p>
+
                                <img class="img-fluid center"
    The figures <b>Fig. 35</b> and <b>Fig. 36</b> show the docking of the both polyG and M-polyG. While polyG
+
                                    src="https://2019.igem.org/wiki/images/7/78/T--TU_Darmstadt--dock_lpetgg.png"
    results align well and seem to be interacting with the &beta;6&#47;&beta;7 loop
+
                                    style="max-width:40%" />
    rather than with the active site, this does not seem to be the case for M-polyG.
+
                                </a>
    Instead of both structures interacting with the &beta;6&#47;&beta;7 loop or
+
                                <div class="caption">
    active site one (best interaction score; dark blue) interacts with the
+
                                    <p>
    &beta;6&#47;&beta;7 loop and the other (best reweighted/total score; light
+
                                        <b>
    blue-gray) appears to interact with the active site.
+
                                            Figure 34 :
</p>
+
                                        </b>
 +
                                        The three best scoring structures (total score, interface
 +
                                        score, reweighted score) of the LPETGG-tag are shown. Only two results are
 +
                                        visible as the best reweighted score candidate is identical to the best
 +
                                        interface score candidate. The reacting section of the LPETGG-tag namely
 +
                                        glycine is colored yellow as is the active site. The glycin of both ligand
 +
                                        peptides is facing the active site.
 +
                                    </p>
 +
                                </div>
  
<img class="img-fluid center"
+
                                <p>
        src="https://2019.igem.org/wiki/images/7/76/T--TU_Darmstadt--dock_zoom_active.png" style="max-width:40%" />
+
                                    Analysis of the scores has shown a similar score for all the three dockings. The
        </a>
+
                                    best scoring results of the LPETGG docking show a tendency of the glycines to
        <div class="caption">
+
                                    face the active site while also being in close proximity to the active site.
          <p>
+
                                </p>
            <b>
+
              Figure 37:
+
            </b>
+
            The close up of the M-polyG peptide (best
+
            total/reweighted score) indicates an interaction of methionine with
+
            arginine<sub>139</sub> and cysteine<sub>126</sub>.
+
            </p>
+
        </div>
+
  
<img class="img-fluid center"
+
                                <img class="img-fluid center"
        src="https://2019.igem.org/wiki/images/4/48/T--TU_Darmstadt--dock_zoom_loop.png" style="max-width:40%" />
+
                                    src="https://2019.igem.org/wiki/images/8/8d/T--TU_Darmstadt--dock_polyg.png"
        </a>
+
                                    style="max-width:40%" />
        <div class="caption">
+
                                </a>
          <p>
+
                                <div class="caption">
            <b>
+
                                    <p>
              Figure 38:
+
                                        <b>
            </b>  
+
                                            Figure 35:
            Methionine of the result with the best interface score
+
                                        </b>
            interacted with the &beta;6&#47;&beta;7 loop rather than the active
+
                                        The three best scoring structures (total score,
            site. Still the reactive glycine residues appear to be bound to the
+
                                        interface score, reweighted score) of the polyG peptide are shown. Only
            &beta;6&#47;&beta;7 loop.
+
                                        two results are visible as the best reweighted score candidate is
            </p>
+
                                        identical to the best interface score candidate. Instead of facing the
        </div>
+
                                        active site (yellow) the reacting glycines (yellow) appear to interact
 +
                                        with the &beta;6&#47;&beta;7 loop of the sortase.
 +
                                    </p>
 +
                                </div>
 +
 
 +
                                <img class="img-fluid center"
 +
                                    src="https://2019.igem.org/wiki/images/9/92/T--TU_Darmstadt--dock_mpolyg.png"
 +
                                    style="max-width:40%" />
 +
                                </a>
 +
                                <div class="caption">
 +
                                    <p>
 +
                                        <b>
 +
                                            Figure 36:
 +
                                        </b>
 +
                                        The three best scoring structures (total score,
 +
                                        interface score, reweighted score) of the poly-g peptide are shown. Only
 +
                                        two results are visible as the best reweighted score candidate is
 +
                                        identical to the best interface score candidate.
 +
                                        Concerning the M-poly-G peptide no uniform directional orientation can
 +
                                        be observed.
 +
                                        The structure with the best interface score (light blue) is oriendted
 +
                                        towards the loop while the structure with the best total/reweighted
 +
                                        (dark blue) is oriented towards the &beta;-sheets.
 +
                                    </p>
 +
                                </div>
 +
 
 +
                                <p>
 +
                                    <b>Fig. 34</b> shows the docking result of the LPETGG peptide to
 +
                                    the sortase. The results shown are the best scoring structures of the clustering
 +
                                    with respect to the total score, interface score and reweighted score. As the
 +
                                    best scoring structure is the same for the total score and the reweighted score
 +
                                    only two peptides are shown. This also applies to <b>Fig. 35</b> and <b>Fig. 36</b>.
 +
                                    For both
 +
                                    results the reacting glycin residues (yellow) are facing the active site.
 +
                                    Additionally, the same residues are in close proximity to the active site.
 +
                                </p>
 +
 
 +
                                <p>
 +
                                    The figures <b>Fig. 35</b> and <b>Fig. 36</b> show the docking of the both polyG and
 +
                                    M-polyG. While polyG
 +
                                    results align well and seem to be interacting with the &beta;6&#47;&beta;7 loop
 +
                                    rather than with the active site, this does not seem to be the case for M-polyG.
 +
                                    Instead of both structures interacting with the &beta;6&#47;&beta;7 loop or
 +
                                    active site one (best interaction score; dark blue) interacts with the
 +
                                    &beta;6&#47;&beta;7 loop and the other (best reweighted/total score; light
 +
                                    blue-gray) appears to interact with the active site.
 +
                                </p>
 +
 
 +
                                <img class="img-fluid center"
 +
                                    src="https://2019.igem.org/wiki/images/7/76/T--TU_Darmstadt--dock_zoom_active.png"
 +
                                    style="max-width:40%" />
 +
                                </a>
 +
                                <div class="caption">
 +
                                    <p>
 +
                                        <b>
 +
                                            Figure 37:
 +
                                        </b>
 +
                                        The close up of the M-polyG peptide (best
 +
                                        total/reweighted score) indicates an interaction of methionine with
 +
                                        arginine<sub>139</sub> and cysteine<sub>126</sub>.
 +
                                    </p>
 +
                                </div>
 +
 
 +
                                <img class="img-fluid center"
 +
                                    src="https://2019.igem.org/wiki/images/4/48/T--TU_Darmstadt--dock_zoom_loop.png"
 +
                                    style="max-width:40%" />
 +
                                </a>
 +
                                <div class="caption">
 +
                                    <p>
 +
                                        <b>
 +
                                            Figure 38:
 +
                                        </b>
 +
                                        Methionine of the result with the best interface score
 +
                                        interacted with the &beta;6&#47;&beta;7 loop rather than the active
 +
                                        site. Still the reactive glycine residues appear to be bound to the
 +
                                        &beta;6&#47;&beta;7 loop.
 +
                                    </p>
 +
                                </div>
  
<p>
+
                                <p>
    As can be seen in <b>Fig. 37</b> visualizing the result of the the docking simulation
+
                                    As can be seen in <b>Fig. 37</b> visualizing the result of the the docking
    (total/reweighted score) suggests an interaction of methionine and two of the
+
                                    simulation
    active sites namely arginine<sub>139</sub> and cysteine<sub>126</sub>.
+
                                    (total/reweighted score) suggests an interaction of methionine and two of the
    <b>Fig. 38</b> shows the interaction of M-polyG with the &beta;6&#47;&beta;7 loop.
+
                                    active sites namely arginine<sub>139</sub> and cysteine<sub>126</sub>.
    The glycines still interact with the &beta;6&#47;&beta;7 loop.
+
                                    <b>Fig. 38</b> shows the interaction of M-polyG with the &beta;6&#47;&beta;7 loop.
    Instead of binding above the &beta;6&#47;&beta;7 loop, which is the case for
+
                                    The glycines still interact with the &beta;6&#47;&beta;7 loop.
    polyG as illustrated in <b>Fig. 36</b>,
+
                                    Instead of binding above the &beta;6&#47;&beta;7 loop, which is the case for
    the interaction seems to be influenced by methionine. By interacting with the
+
                                    polyG as illustrated in <b>Fig. 36</b>,
    residues in the &beta;-helix
+
                                    the interaction seems to be influenced by methionine. By interacting with the
    methionine could potentially hinder binding of glycine to the
+
                                    residues in the &beta;-helix
    &beta;6&#47;&beta;7 loop by partial
+
                                    methionine could potentially hinder binding of glycine to the
    immobilization of the peptide. Overall peptide binding and orientation is less
+
                                    &beta;6&#47;&beta;7 loop by partial
    uniform compared
+
                                    immobilization of the peptide. Overall peptide binding and orientation is less
    polyG without the leading methionine, which could be an indicator of lesser
+
                                    uniform compared
    binding affinity of M-PolyG towards
+
                                    polyG without the leading methionine, which could be an indicator of lesser
    the &beta;6&#47;&beta;7 loop.
+
                                    binding affinity of M-PolyG towards
</p>
+
                                    the &beta;6&#47;&beta;7 loop.
 +
                                </p>
  
<h3>Conclusion</h3>
+
                                <h3>Conclusion</h3>
  
<p>
+
                                <p>
    To computationally investigate binding affinities of the polyG and M-polyG as
+
                                    To computationally investigate binding affinities of the polyG and M-polyG as
    well as the LPETGG tags we performed
+
                                    well as the LPETGG tags we performed
    docking simulations using the <i>Rosetta FlexPepDock</i> application. We used a
+
                                    docking simulations using the <i>Rosetta FlexPepDock</i> application. We used a
    modified version of the recommended
+
                                    modified version of the recommended
    protocol as the modified version was easier to automate and served our purpose
+
                                    protocol as the modified version was easier to automate and served our purpose
    better than the standard protocol.
+
                                    better than the standard protocol.
    From the calculated scores only, we could not see a difference in binding
+
                                    From the calculated scores only, we could not see a difference in binding
    affinities.
+
                                    affinities.
    Thus, we inspected the best scoring
+
                                    Thus, we inspected the best scoring
    structures regarding the total score, the interface score and the reweighted
+
                                    structures regarding the total score, the interface score and the reweighted
    score using PyMOL.
+
                                    score using PyMOL.
    Since the best structures with respect to total score and reweighted score were
+
                                    Since the best structures with respect to total score and reweighted score were
    the same for all simulations,
+
                                    the same for all simulations,
    only two structures have been inspected per run. A polyproline tag was appended
+
                                    only two structures have been inspected per run. A polyproline tag was appended
    to all the peptides to simulate
+
                                    to all the peptides to simulate
    the modification of the VLPs with a small peptide.
+
                                    the modification of the VLPs with a small peptide.
    <!-- GRoß helices etc erwähnen als begründung -->
+
                                    <!-- GRoß helices etc erwähnen als begründung -->
</p>
+
                                </p>
  
<p>
+
                                <p>
    As expected, the results showed that for LPETGG, the glycines of both peptides
+
                                    As expected, the results showed that for LPETGG, the glycines of both peptides
    oriented towards the active site.
+
                                    oriented towards the active site.
    This is unsurprising as peptides with the sequence LPXTGG are known to be
+
                                    This is unsurprising as peptides with the sequence LPXTGG are known to be
    substrate of the Sortase. It was more surprising to
+
                                    substrate of the Sortase. It was more surprising to
    see the polyG tag oriented away from the active site since polyG also is a known
+
                                    see the polyG tag oriented away from the active site since polyG also is a known
    substrate of the sortase. Both polyG peptides
+
                                    substrate of the sortase. Both polyG peptides
    were facing the &beta;6&#47;&beta;7 loop (residues 105 to 115) uniformly and
+
                                    were facing the &beta;6&#47;&beta;7 loop (residues 105 to 115) uniformly and
    appeared to be interacting with it. The M-polyG peptides did not
+
                                    appeared to be interacting with it. The M-polyG peptides did not
    show a uniform orientation or interaction scheme. On one hand the visualization
+
                                    show a uniform orientation or interaction scheme. On one hand the visualization
    of the best result concerning the total and reweighted
+
                                    of the best result concerning the total and reweighted
    score has shown interaction of methionine with the cysteine<sub>126</sub> and
+
                                    score has shown interaction of methionine with the cysteine<sub>126</sub> and
    arginine<sub>139</sub>, two residues of the active
+
                                    arginine<sub>139</sub>, two residues of the active
    site. On the other hand, the visualization of the best result with respect to
+
                                    site. On the other hand, the visualization of the best result with respect to
    the interface score shows the M-polyG facing the mobile &beta;6&#47;&beta;7
+
                                    the interface score shows the M-polyG facing the mobile &beta;6&#47;&beta;7
    loop.
+
                                    loop.
    In contrast to the polyG peptide the lacking the methionine, the M-polyG peptide
+
                                    In contrast to the polyG peptide the lacking the methionine, the M-polyG peptide
    is pulled down below the &beta;6&#47;&beta;7 loop by the methionine interacting
+
                                    is pulled down below the &beta;6&#47;&beta;7 loop by the methionine interacting
    with one of the &beta;-sheets leading to the active site. This is not the case
+
                                    with one of the &beta;-sheets leading to the active site. This is not the case
    with the polgG results, which lie aligned in one plane
+
                                    with the polgG results, which lie aligned in one plane
    with the &beta;6&#47;&beta;7 loop.
+
                                    with the &beta;6&#47;&beta;7 loop.
</p>
+
                                </p>
  
<h2>Modeling Conclusion</h2>
+
                                <h2>Modeling Conclusion</h2>
  
<p>
+
                                <p>
        For our project it was key to understand and characterize Sortase A7M.
+
                                    For our project it was key to understand and characterize Sortase A7M.
        As there is no annotated 3D structure for this specific Sortase, an <i>in
+
                                    As there is no annotated 3D structure for this specific Sortase, an <i>in
        silico</i> structure determination
+
                                        silico</i> structure determination
        was performed. Comparative modeling with Rosetta produced valid structures. We used
+
                                    was performed. Comparative modeling with Rosetta produced valid structures. We used
        the best structure, candidate S_14771, for extensive characterization.
+
                                    the best structure, candidate S_14771, for extensive characterization.
        We evaluated the model with regard to its secondary structure using Ramachandran
+
                                    We evaluated the model with regard to its secondary structure using Ramachandran
        plots. The Ramachandran plot suggested plausible secondary structures.
+
                                    plots. The Ramachandran plot suggested plausible secondary structures.
    </p>
+
                                </p>
  
    <p>
+
                                <p>
        Molecular Dynamics simulations were used to investigate stability and dynamic
+
                                    Molecular Dynamics simulations were used to investigate stability and dynamic
        properties of the candidate.
+
                                    properties of the candidate.
        The RMSD and radius of gyration stabilized over the course of the simulation, a
+
                                    The RMSD and radius of gyration stabilized over the course of the simulation, a
        first indicator of an equilibrated structure.
+
                                    first indicator of an equilibrated structure.
        Interestingly, RMSF analysis showed strond fluctuations of residues 105 to 115.
+
                                    Interestingly, RMSF analysis showed strond fluctuations of residues 105 to 115.
        We further investigated this by performing
+
                                    We further investigated this by performing
        Principle Component Analysis. Doing so, we extracted the principle movements of
+
                                    Principle Component Analysis. Doing so, we extracted the principle movements of
        the model. We could observe movement
+
                                    the model. We could observe movement
        of the &beta;6&#47;&beta;7 loop towards the active site, suggesing the presence
+
                                    of the &beta;6&#47;&beta;7 loop towards the active site, suggesing the presence
        of a binding site.
+
                                    of a binding site.
        Consequently, we performed docking simulations.
+
                                    Consequently, we performed docking simulations.
    </p>
+
                                </p>
  
    <p>
+
                                <p>
        FlexPepDock was used to conduct the docking simulations with target peptides.
+
                                    FlexPepDock was used to conduct the docking simulations with target peptides.
        Each run yielded 50,000 structures.
+
                                    Each run yielded 50,000 structures.
        In multiple steps we reduced the amount of complexes to 100 clusters with
+
                                    In multiple steps we reduced the amount of complexes to 100 clusters with
        respect to total, reweighted and interface score.
+
                                    respect to total, reweighted and interface score.
        We extracted the best scoring complexes and investigated interactions.
+
                                    We extracted the best scoring complexes and investigated interactions.
    </p>
+
                                </p>
  
    <p>
+
                                <p>
        For LPETGG we observed a uniform binding to the active site, fullfilling our
+
                                    For LPETGG we observed a uniform binding to the active site, fullfilling our
        expectation.
+
                                    expectation.
        Strikingly, polyG appeared to bind to the &beta;6&#47;&beta;7 loop in a uniform
+
                                    Strikingly, polyG appeared to bind to the &beta;6&#47;&beta;7 loop in a uniform
        manner.
+
                                    manner.
        As it is know from literature polyG is a functioning ligand of sortase.
+
                                    As it is know from literature polyG is a functioning ligand of sortase.
        Supported by literature and our data, <b>we postulate the following
+
                                    Supported by literature and our data, <b>we postulate the following
            mechanism</b>:
+
                                        mechanism</b>:
        the &beta;6&#47;&beta;7 loop transports bound polyG towards the active site of
+
                                    the &beta;6&#47;&beta;7 loop transports bound polyG towards the active site of
        Sortase A7M, thereby lowering the activation energy of the linking reaction.
+
                                    Sortase A7M, thereby lowering the activation energy of the linking reaction.
    </p>
+
                                </p>
  
    <p>
+
                                <p>
        As the theory is neither backed up by nor contradicts experimental data, further
+
                                    As the theory is neither backed up by nor contradicts experimental data, further
        research is required.
+
                                    research is required.
    </p>
+
                                </p>
  
  

Revision as of 17:43, 21 October 2019

Sortase A7M (Ca2+-independent variant)

Profile

Name Sortase A7M
Base pairs 450
Molecular weight 17.85 kDa
Origin Staphylococcus aureus, synthetic
Properties Ca2+-independent, transpeptidase, linking sorting motif LPXTG to poly-glycine Tag

Structure

Figure 1 : 3D-Structure of Sortase A7M. To find out more, visit our modeling page.

Usage and Biology

Transpeptidase: Sortase

Sortases belong to the class of transpeptidases and are mostly found in gram-positive bacteria. The high rate of resistance to several antibiotics targeting gram-positive bacteria is also based on the property of this enzyme class. Sortases can non-specifically attach virulence and adhesion‐associated proteins to the peptidoglycans of the cell-surface.
In general, sortases are divided into six groups (A-F) that have slightly different properties and perform three tasks in cells. Group A and B attach proteins to the cell-surface while Group C and D help building pilin-like structures. Group E and F are not properly investigated yet which is why their exact function is not known. For our project we are especially interested in the sortases of the group A since they covalently attach various proteins or peptides on the cell membrane as long as their targeting motif is at the C-terminus of the corresponding protein. In comparison to other transpeptidases Sortase A has the advantage that it is rather stable regarding variations in pH Sortase A catalyzes the formation and cleavage of a peptide bond between the C-terminal LPXTG amino acid motif and an N-terminal poly-glycine motif. The enzyme originates from Staphylococcus aureus and is able to connect any two proteins as long as they possess those matching target sequences. In the pentapeptide motif LPXTG, X can be any amino acid except cysteine. Sortase A is rather promiscuous with regard to the amino acid sequence directly upstream of this motif, a fact that makes it optimal for labeling applications. Even better, amino acids C-terminal of the poly-glycine motif are not constrained to a certain sequence.

Reaction

To better understand how the enzymatic reaction works it is necessary to look at the crystal structure of Sortase A. The enyzme consists of an eight-stranded β‐barrel fold structure. The active site is hydrophobic and contains the catalytic cysteine residue Cys184 as well as a key histidine residue H120 that can form a thiolate-imidazolium with the neighboring cysteine. An additional structural property that also other sortases show is the calcium binding site formed by the β3/β4 loop. The binding of a calcium ion slows the motion of the active site by coordinating to a residue in the β6/β7 loop. This helps binding the substrate and increasing the enzymatic activity nearly eightfold. When a substrate gets into the active site, the cysteine attacks the amide bond between the threonine and the glycine in the LPXTG motif. After this the protonated imidazolium serves as an acid for the departing glycine with unbound NH2 of the former amide bond while the rest of the motif is bound to the cysteine residue. Another glycine nucleophile is then necessary in its deprotonated form to attack the thioester and re-establish an amide bond at the LPET-motif. This reaction is dead-ended if the used nucleophile is water. Due to the fact that the mechanism is based on protonated forms of the catalytic residues the reaction is quite pH-dependent. Although the Sortase A in general is relatively stable between pH 3 and 11 the reaction works best around pH 8.

Sortase variants

Due to the fact that the wildtype Sortase A shows rather slow kinetics, a pentamutant has been developed (Sortase A5M). This version of the enzyme carries mutations in P94R/D160N/D165A/K190E/K196T which lead to a 140- fold increase in activity. Thereby, reaction rates are improved even at low temperature, however, Sortase A5M is still Ca2+-dependent. This dependence interferes with potential in vivo usage, as the concentrations of calcium in living cells can vary considerably. Hence a sortase mutant that acts across high differences in calcium concentrations or even works completely Ca2+-independently would be required for in vivo applications of sortase. To attain a high yield enzyme which is also calcium-independent Ca2+-independent mutations were combined with the Sortase A5M resulting in Sortase A7 variants such as the Sortase A7M. The newly achieved calcium-independence of these variants enable sortase applications not only in vitro but in vivo as well.

Sortase A7M

For our project we chose to work with this optimized Sortase A7M. Its size is about 17.85 kDa and it has been shown to be stable for several weeks in the fridge at 4 °C. It also possesses the same properties of pH stability like other sortases but comes with the advantage of being calcium independent. "Sortagging" applications have included the cyclization of proteins and peptides , modification and labeling of antibodies and the synthesis of protein conjugates with drugs, peptides, peptide nucleic acids and sugars.Moreover it poses a lot of advantages for the binding of two proteins in vivo since it has relatively small tags which avoids putting too much metabolic burden on the cells when expressing the proteins of interest. This also avoids disturbing the folding of the proteins of interest and the later biological functions since the Sortase A7M is able to work under physiological conditions. Other methods like the intein- based labeling of surfaces require large fusion-proteins with the intein domain which puts stress on the living cells and might cause folding and solubility issues. Another application for sortase-mediated systems is the anchoring of proteins on the cell wall of gram-positive bacteria which can be used for display of heterologous proteins. It is also possible to attach non-biological molecules to the respective tag. The accessibility and flexibility determine the ability of a sortase enzyme to recognize the sorting motif and catalyzing the transacylation.

Methods

Cloning

The methods used for cloning of the different mutants of the sortase were restriction and ligation via NdeI and SalI and Gibson assembly. The Sortase A5M was cloned into pET24(+) vector via restriction and ligation NdeI and SalI as restriction enzymes. The vector posesses a kanamycin resistance and the srta7m is controlled through a T7 promoter, which can be induced with IPTG. Sortase A7M is controlled by the same T7 promoter. Sortas A, introduced by iGEM Stockholm 2016, was cloned via Gibson assembly into PSB1C3. This has a chloramphenicol resistance and is also controlled under a T7 promoter. Cloning of all products was checked via sequencing.

Expression and purification

After successfully transforming our sortase genes in BL21 cells, we inoculated 100 mL overnight cultures, with the respective antibiotic. The next day 1 L cultures were inoculated with the overnight culture to reach OD600 = 0.1. Subsequently the cultures were incubated under constant shaking at 37 °C until they reached OD600 = 0.6. At OD600 = 0.6 the cultures were induced with 0.5 mL of 1 M Isopropyl-β-D-thiogalactopyranosid (IPTG). The gene expression was performed at 30 °C under constant shaking overnight. After expression of Sortase A7M, Sortase A5M, and Sortase A from Stockholm (BBa_K2144008) in BL21 cultures the cells were crushed via EmulsiFlex (Avestin) and proteins were purified through affinity chromatography via Fast Protein Liquid Chromatography (FPLC) with the ÄKTA pure (GE Healthcare, Illinois, USA). His-Tag was used for purification of Sortase A7M and Sortase A (Stockholm) and Strep-Tag II was used for purification of Sortase A5M.

SDS-Page

To verify the successful production of of Sortase A7M, Sortase A5M, and Sortase A SDS-PAGEs were performed. The resulting bands were compared to the molecular weight of the different sortase variants. Also, SDS-PAGEs were completed to verify enzymatic activity in assays prior to measuring sortase properties via Fluorescence Resonance Energy Transfer (FRET).

Flourescence Resonance Energy Transfer (FRET)

To determine the kinetics of our transpeptidase variants, FRET assays were performed in 384 well-plates (dark) using a Tecan plate reader. A FRET relies on the phenomenon that an excited fluorophore (donor) transfers energy to another fluorophore (acceptor), thereby exciting it. This process only works if both fluorescent molecules are in close proximity and depends on the FRET-Pair. By transferring the energy from donor to acceptor, the donor's emission is reduced and the intensity of the acceptors emission is increased . The efficiency depends on the distance between the fluorophore, the orientation and the spectral characteristics . You can see the principle of FRET in Fig. 2.

Figure 2 : Jablonski diagram showing the energy transfer between a FRET-pair (design based on Wikipedia).

Mass Spectrometry

To estimate the product yield of catalyzed reactions by Sortase A7M we performed mass spectrometry. The tested molecules can be distinguished between products and educts due to desorption and ionization. Therefore, we used the electrospray ionization (ESI) technique for the mass spectrometry. This technique has a low resolution but is a very soft ionization method, which makes it an optimal method for biological molecules.

Enzyme-linked Immunosorbent Assay (ELISA)

The enzyme-linked immunosorbent assay (ELISA) is an analytical assay frequently utilized for immobilization and verification of different macro molecules. Immobilizing the recognition tag of the sortase on a surface allows us to verify the coupling efficiency of Sortase A7M under certain conditions. Firstly, we functionalized paper to presenting a poly-G peptide sequence on the surface. Using the Sortase A7M, a ZZ-domain carrying a LPETG amino acid sequence is coupled to the short peptide sequence of GGGßA. The ZZ-domain itself shows high affinity to the human IgG antibody FC-domain and therefore allows the following immobilization of IgG. The secondary antibody is an anti-human IgG, Fab-specific antibody carrying the horseradish peroxidase enzyme (HRP). HRP is capable of converting 4-chloro-1-naphthol to benzo-4-chlorocyclohexandienone using hydrogen peroxide. This color-reaction allows us to draw a conclusion about the previous ZZ-domain’s sortase-mediated coupling efficiency since the turnover of the HRP is directly connected to the ligated ZZ-domains.

Results

Characterization of Sortase A7M (and comparison to BBa_K3187016)

How do we measure if our purified sortases are active?

After purification of the sortases, we first performed SDS-PAGEs to verify that they are pure and monomeric. You can see in Fig. 3 that the purifications were successful. Next, we tested if the purified sortases connect two proteins that carry the important Sortase-recognition tags, N-terminal polyG and C-terminal LPETGG. Therefore, we added the sortases to a mix of GGGG-mCherry and mCherry-LPETGG. The reactions were performed in different buffers, at different enzyme-to-substrate ratios and for different time spans. We performed an SDS-PAGE, and prior to Coomassie staining, we recorded fluorescent images of the gel. Thereby, we could identify mCherry bands in the gel.

Figure 3 : SDS-PAGE of Sortase A7M and Sortase A5M where the bands show up at approximately 15 kDa. Our estimated size for Sortase A7M was 17.85 kDa, and for Sortase A5M 18.07 kDa. This confirms the result shown on the gel, since the band of Sortase A5M is a little higher than the one of Sortase A7M.

Figure 4 : a) Fluorescence gel of the sortase-reaction of GGGG-mCherry and mCherry-LPETGG mediated by Sortase A7M incubated for 2 h and 4 h each. Reaction solutions were mixed with different ratios from enzyme to substrate concentration(1:3;1:10) and each incubated in two different buffers(Tris-HCl and Ammoniumdicarbonat). Product bands at a height of about 57 kDa can be seen in lane 4, 5, 6, 8, 9 (from left to right). The bands below the product at about 38 kDa could be semi-denatured mCherry dimers.
b) Fluorescence gel on top of the coomassie-stained gel of the sortase-reaction of GGGG-mCherry and mCherry-LPETGG mediated by Sortase A7M incubated for 2 h and 4 h each. Reaction solutions were mixed with different ratios from enzyme to substrate concentration(1:3;1:10) and each incubated in two different buffers (Tris-HCl and Ammoniumdicarbonat). Product bands at a height of about 57 kDa can be seen in lane 4, 5, 6, 8, 9 (from left to right). The bands below the product at about 38 kDa could be semi-denatured mCherry dimers. Additionally, Sortase A7M can be seen at 17 kDaA7M.The unprocessed mCherry monomers can be seen at 28 kDa.

As shown in Fig. 4, under certain conditions, a product band appeared at the expected size of 57.3 kDa (28.5+28.8 kDa). From this first activity test, we draw three conclusions:

  • Our purified Sortase A7M is active
  • The enzyme-substrate ratio affects the product yield
  • The duration of the reaction affects the product yield


Additionally, TRIS buffer seems to alter the coomassie staining efficiency of Sortase A7M. This endpoint measurement gave us a first impression that our Sortase A7M works nicely. Of course, we wanted to further characterize the parameters of the reaction. When we understand the Sortase better, modification of our VLPs will become more straightforward.

How do we measure sortase reaction kinetics

In the above described assays, we noticed the impact of enzyme-substrate ratio and reaction duration on the overall product yield. We thought about how to further measure the kinetics of the sortase reaction. In the literature, sortase reaction kinetics are often measured by FRET-assays. Therefore, we designed a suitable FRET-assay. In the end, we came up with a new FRET pair not described in the literature to date: 5-TAMRA-LPETG and GGGG-sfGFP.

Development of a new FRET pair

For characterization of the reaction kinetics of Sortase A7M, Sortase A5M and Sortase A, we decided to develop a suitable FRET pair. In order to find an optimal FRET pair, we first recorded an emission and absorption spectrum of 5-Carboxytetramethylrhodamin-LPETG (TAMRA) and GGGG-mCherry to verify the suitability for the FRET effect, checking for a possible overlap between the donor's emission and the acceptor's extinction.

Figure 5 : Design of a FRET-pair of 5-TAMRA-LPETG (TAMRA) and GGGG-mCherry (mCherry). In this configuration TAMRA acts as donor and mCherry as acceptor. When the two fluorophores are not linked via the substrates of the sortase only TAMRA is being excited. After sortase mediated ligation of the two substrates mCherry is the fluorophore being excited via the FRET and the emission of mCherry intensifies. Meanwhile, the emission of TAMRA decreases.

TAMRA is a chemical fluorophore that has an absorbance maximum at 543 nm and an emission maximum at 570 nm. The terminal carboxy group of the dye was linked via a lysine linker to the LPETG sequence (see Fig. 5). mCherry has an N-terminal poly-glycine sequence and can therefore be linked to the LPETG motif of TAMRA via the Sortase A. For a sufficient FRET-effect, it is also necessary that the distance between donor and acceptor is lower than the Förster radius. The Förster radius describes the distance between two fluorophores at which 50 % of the energy is transferred.
First, we wanted to identify which concentrations are needed for our experiment, then set up the reaction and measured fluorescence intensities. Over time, a decline in the emission of TAMRA can be observed as Sortase A7M/A5M is converting more educts to products.

Figure 6 : The graph shows the extinction and emission spectra of TAMRA and mCherry. Due to the large overlap of TAMRA emission and mCherry extinction it is possible to perform a FRET with this pair of fluorophores. The graph show the relative fluorescence unit (RFU[%]) in relation to the extincted/emitted wavelength [nm]. The peaks are normalized to 100 %.

The emission and extinction spectra of TAMRA and mCherry exhibit an overlap of emission of TAMRA and extinction of mCherry. Based on this output, a FRET-assay for the kinetics of Sortase A7M was performed to confirm whether the FRET-pair is working. As TAMRA is excited with light of a lower wavelength than mCherry, the former serves as FRET donor and the latter as acceptor. We chose the excitation wavelength at 485 nm to prevent unnecessary “leak” excitation of mCherry. Nevertheless, an extinction of mCherry could not be excluded and may have negative effects on the visibility of the FRET.

Figure 7 : Spectrum of the negative control of TAMRA and mCherry, without Sortase A7M, over the course of 20 min in 5 min intervals. Depicted are the emission wavelengths against the RFU.

Figure 8 : Spectrum of TAMRA and mCherry, with Sortase A7M, over the course of 20 min in 5 min intervals. Depicted are the emission wavelengths against the RFU. The sortase-mediated ligation results in a decline of both emission peaks.

The analysis of the data shown in Fig. 7 confirmed the aforementioned suspicion that mCherry is also excited at 485 nm, which makes differentiation of the fluorescence more difficult. Furthermore, Fig. 8 shows that the difference in the decline of TAMRA is not significant. Accordingly, a decline in the emission maximum of TAMRA over time is also visible in the negative control. One reason might be bleaching of TAMRA through the excitation by the laser. Nevertheless, conversion by the Sortase A7M can be observed by comparing the results with the negative control.

Figure 9 : ortase reaction in TAMRA-mCherry-FRET after subtracting the negative control. Depicted is the difference in RFU over time [min]. Within the first 20 min of the substrate conversion is the quickest. At 30 min a plateau is reached. After 60 min starts catalyzing the reverse reaction. The mean ΔRFU value was normalized to zero for better visualization. The ΔRFU refers to the difference between the negative control without the respective sortase at 570 nm.

To confirm the functionality of the Sortase A7M, another more sufficient FRET-pair was developed. The measured absorbance and emission spectra indicated that TAMRA and superfolder green fluorescence protein (sfGFP) are a possible FRET-pair. The sfGFP has an N-terminal polyglycine sequence and can therefore be linked to TAMRA with the sorting motif, in the same way as mCherry was connected. However, the small overlap between the extinction spectra of sfGFP and TAMRA could solve the previous “simultaneous excitation” problem we observed for the mCherry-TAMRA FRET-pair. Because of the lower excitation maximum of sfGFP compared to TAMRA, sfGFP was chosen as donor and TAMRA as acceptor. sfGFP was excited at 465 nm to minimize the unnecessary leak excitation of sfGFP.

Figure 10 : The graph shows the extinction and emission spectra of TAMRA and mCherry. Due to the large overlap of sfGFP emission and TAMRA extinction it is possible to perform a FRET with this pair of fluorophores. The graph show the relative fluorescence unit (RFU[%]) in relation to the extincted/emitted wavelength [nm]. The peaks are normalized to 100 %.

Figure 11 : Design of a FRET-pair of 5-TAMRA-LPETG (TAMRA) and GGGG-sfGFP (sfGFP). In this configuration sfGFP acts as donor and TAMRA as acceptor. When the two fluorophores are not linked only sfGFP is being excited. After sortase-mediated ligation of the two substrates, TAMRA is the fluorophore being excited via FRET and the emission of TAMRA intensifies. Meanwhile, the emission of sfGFP decreases.

The transfer of energy from sfGFP to TAMRA can be seen by the decrease in emission of sfGFP and increase in emission from TAMRA. Compared to TAMRA as an acceptor, the sfGFP bleaches significantly less and is consequently more suitable as a donor for FRET. Furthermore, the afore mentioned problem of simultaneous donor and acceptor excitation seems to be solved. It seems that we have found a FRET-pair with superior properties.

Figure 12 : Spectrum of the negative control of TAMRA and sfGFP, without Sortase A7M, over the course of 25 min in 5 min intervals. Depicted are the emission wavelengths against the RFU.

Figure 13 : Spectrum of TAMRA and sfGFP, with Sortase A7M, over the course of 25 min in 5 min intervals. Depicted are the emission wavelengths against the RFU. The sortase-mediated ligation results in a decline of both emission peaks.

Due to the collected data of both FRET-pairs we decided to use the TAMRA-LPETG and GGGG-sfGFP FRET-pair for further characterization of our Sortase A variants. Two reasons justify this decision:

  • TAMRA bleaches stronger than sfGFP when excited with a laser.
  • The spectral overlap between TAMRA and mCherry disturbs “clean” energy transfer, thus the FRET-effect would be less visible and could not be used for analysis of the sortase-mediated reaction.

For recording of sortase reaction parameters we recommend using the FRET-pair sfGFP-TAMRA. As this pair of fluorophores proved to have near perfectly aligned spectra and since the bleaching effect is visibly lower on sfGFP than on TAMRA, we chose to use this FRET-pair in most of our following assay. Nevertheless, we do not rule out the use of TAMRA-mCherry as a FRET-pair since we used it in several FRET-assays as well.

Figure 14 : Animation of Sortase A7M enzyme kinetics over the course of 3 h. The reaction speed increases radically in the beginning moving from RFU 8000 to RFU 6000 at λ = 550 nm where a plateau is reached (blue). The negative control (orange) is also reduced in its RFU due to bleaching. Nevertheless, a peak at λ = 580 nm arises already after short reaction time. This peak indicates the successful Fluorescence Resonance Energy Transfer.

Why are enzyme-substrate ratio and duration important parameters of the sortase reaction?

In one of our first FRET experiments, we addressed the simple theory: More sortase in the reaction mix improves the initial product formation. For this, we used the TAMRA-LPETG : GGGG-mCherry FRET pair. We measured the FRET change over time in a multiwell platereader (Fig. 15).

Figure 15 : Reaction kinetics of Sortase A7M in different concentrations at same level of substrate concentration (6 µM TAMRA-LPETG and (M)GGGG-mCherry). The light blue graph shows the reaction when the sortase concentration is higher (5 µM) and lower concentration (1 µM), in the dark blue graph. Wen the enzyme concentration is lower the maximum in substrate conversion is reached later. The light blue graph also shows a slight decline in product concentration from 60 min onwards.The ΔRFU refers to the respective negative control without each sortase at 570 nm. The mean ΔRFU value was normalized to zero for better visualization.

However, in this assay we observed a striking feature of the sortase reaction. In the reaction with more Sortase A7M present, the FRET change started to decrease after a certain maximum was reached! We suspected some kind of dead-end product formation, as the sortase does also catalyze the reverse reaction of product to educts. Therefore, the overall reaction duration is a very important parameter. We gathered more details about the role of the reverse reaction during our comparison of Sortase A7M and Sortase A5M. Just keep reading if you want to know more!

Who wins - Sortase A7M or Sortase A5M

In our introduction we described that Sortase A7M and Sortase A5M are both fascinating enzymes, although each of them has a unique „selling point“. Sortase A5M is faster, whereas Sortase A7M is Ca2+-independent. We confirmed both of these points in extensive FRET-assays. According to the literature, Sortase A5M works best with a Ca2+-concentration of 2 mM. In contrast, Sortase A7M is a calcium-independent mutant of the enzyme. Moreover, Ca2+ even seems to inhibit this enzyme variant slightly .

Firstly, we confirmed that in contrast to Sortase A5M, Sortase A7M is Ca2+-independent. The results are shown in Fig. 16 Sortase A7M also works in presence of Ca2+, but these FRET experiments made us suspect that Ca2+ may even inhibit Sortase A7M.

Figure 16 : Sortase A7M FRET-assay of connecting TAMRA-LPETG with GGGG-sfGFP with and without Ca2+. The Sortase A7M reaction was measured with 6 mM Ca2+ every minute. Sortase A7M reaction without Ca2+ was measured every three minutes. It is shown that this enzyme variant works with calcium and without calcium as well, although it seems like Sortase A7M is slightly inhibited due to the presence of calcium which explains why the left graph is lower than the right one. The ΔRFU refers to the respective negative control without each sortase at 514 nm. The mean ΔRFU value of the duplicates was normalized to zero for better visualization.

Secondly, we confirmed that Sortase A5M is inactive if Ca2+ is absent, which can be seen in Fig. 17 As expected, Sortase A5M shows increasing enzymatic activity with increasing Ca2+ levels. The reaction runs fastest with 2 mM Ca2+, and the maximal FRET change (in terms of ΔRFU) is reached after 37.5 min. Strikingly, the FRET change decreases afterwards. We observed this phenomenon before and assume this to be due to dead-end product formation caused by the reverse reaction.

Figure 17 : Both figures show Sortase A5M FRET assay connecting TAMRA-LPETG and GGGG-sfGFP with different Ca2+-concentrations. The right graph is showing that Sortase A5M does not work without calcium. The negative ΔRFU measurements are probably caused by measuring errors by the Tecan platereader. The ΔRFU refers to the respective negative control without each sortase at 514 nm. The mean ΔRFU value of the duplicates was normalized to zero for better visualization.

According to the results of this assay, Sortase A7M is definitely Ca2+-independent, since it shows linking activity without calcium in the vicinity. The enzyme mutant also works in presence of Ca2+ (Fig. 17), but these FRET experiments made us suspect that Ca2+ may even inhibit Sortase A7M, since it shows less activity with calcium around than without calcium.

To better address this question, an ELISA was performed. Therefore, a piece of paper functionalized with GGGβA was connected to a protein domain, which binds antibodies to the LPTEG-tag. The results are shown in Fig. 18.

Figure 18 : Absorbance at 450 nm at a temperature of 23.8˚ C
In well 1 additional 10 mM Ca2+ were added which was not the case in well 2. Well 3 serves as a negative control since the enzyme is missing in this reaction

As shown in Fig. 18, the highest absorption was measured in well 2. Thus, Sortase A7M works more efficiently when no Ca2+ is around. The absorption is also relatively high for the negative control, which can be explained by poor washing before the substrate for Horeseradish peroxidase (HPR) was added. This assay shows the functionality of Sortase A7M even in context of surfaces since we confirmed that Sortase A7M is able to connect tags attached to paper. This shows that the surface structure is not a relevant factor for the enzyme.

Figure 19 : Comparison of the reaction speed of Sortase A5M with Ca2+ and Sortase A7M without Ca2+, therefore each working under optimal conditions. The kinetics were measured via a FRET connecting TAMRA-LPETG and GGGG-sfGFP. The ΔRFU refers to the respective negative control without each sortase at 514 nm. The mean ΔRFU value of the triplicates was normalized to zero for better visualization.

When we compare the reaction speed of Sortase A5M and Sortase A7M, Sortase A5M is the clear winner (see Fig. : 19). However, this means of course that the reverse reaction is also faster in the case of Sortase A5M. Consequently, Sortase A7M is the best variant for in vivo modification of our VLPs as it is Ca2+-independent. On the other hand, Sortase A5M is a suitable enzyme variant for in vitro modification due to its high efficiency.

What about other substrates?

Primary Amines

The literature describes Sortase A7M as somewhat „promiscuous“ towards other substrates than GGGG(polyG) as long as the substrate possesses a primary amine. To confirm this, we performed additional assays with other substrates in the lab of Prof. Kolmar. The Sortase A7M used for this assay was stored in the fridge at 4 °C for two weeks. The substrates were TAMRA with a KLPETG bound to TAMRA via the lysine side chain and 3-azidopropanamine as the example for a primary amine. The reaction was performed for two hours at 37 °C. It was then analyzed by electron spray ionization mass spectrometry (ESI-MS) (Fig. 20).

Figure 20 : Mass spectrum before the reaction of TAMRA-LPETG with 3-azidopropanamine showing the educt at 1054 g/mol.

Fig. 20 shows the educt-peak in the mass spectrum. TAMRA with the LPETG-tag weighs 1054 g/mol. Shown above in green is the single charged molecule at 1054.27 g/mol and the double charged molecule at 528.75 g/mol.

Figure 21 : Mass spectrum after the reaction of TAMRA-LPETG with 3-azidopropanamine showing the product at 1079.37g/mol.

Fig. 21 shows the product-peak in the mass spectrum. The primary amine that was taken as an example has a molecular weight of 100 g/mol. After the reaction the glycine of the LPETG-tag has been removed and therefore the product only consists of TAMRA-KLPET-3-azidopropanamine. When adding the two molecular weights and subtracting the weight of the glycine it adds up to a total weight of 1078 g/mol which can be seen in the single loaded 1079.37 g/mol peak (Fig. 21), since the ESI-MS we used has a small error margin. The peak in black again is the double loaded peak at 541.55 g/mol. This clearly shows that the sortase reaction took place. Furthermore, we can conclude that the Sortase A7M accepts any primary amine as a substrate. However, mass spectrum does not show the ratio of educt and product, which is why we cannot estimate whether the turnover is as high as when using a polyG-tag as substrate. Additionally this assay confirms our suspicion that the Sortase A7M is stable at 4 °C and still functional if stored at said temperature for at least two weeks.

Yield

For the characterization of Sortase A7M an assay was designed to show the coupling efficiency between the TAMRA-LEPTG and the tetrapeptide GGG-Beta-Alanin (GGGβA) catalyzed by the Sortase. The Sortase reaction was performed for 1h at 30˚C and was stopped by enzyme separation through centrifugal filtration. For analysis mass spectrometry (ESI-MS) was used. The mass spectrometry enables differentiation between products and educts. It allowed us to make an estimate of the product yield. The calculated theoretical molecular masses are 1054 g/mol for TAMRA and 1240 g/mol for TAMRA-LPETGGGβA. Therefore, peaks are expected at mass/n, with n ∈ N. By comparison of the number of corresponding peaks, estimation of the product yield is possible as both molecules possess the same amount of ionizable groups and thus the difference in the ionizability of both molecules is negligible.

Figure 22 : Mass spectrum of the sortase-mediated ligation of TAMRA-LPETG and GGGβA showing the difference in height of the educt-peak and the product-peak which can be used to estimate the yield of our Sortase A7M.

In Fig. 22 the 621.56 peak can be assigned to the TAMRA-LEPTGGGβA and the 528.85 to the TAMRA-LPETG. The count ratios of the two molecules mentioned show an excess of the product.

Is Sortase A7M able to attach cargo to P22 coat protein?

We performed the linking reaction with CP-LPETGG and GGGG-mCherry as substrates and applied them to an SDS-PAGE. We saw products at the expected size (28 kDa + 49 kDa = 77 kDa) thus the requirement is fulfilled. However, a lot of additional bands appeared that we did not expect. These bands also appeared when only Sortase A7M and CP were mixed.

Figure 23:

a) Sortase A7M band is at expected height (17.85 kDa). The two negative controls containing only GGGG-mCherry (28 kDa) and CP-LPETGG (49 kDa) at the expected respective heights. b) Shown are sfGFP-SP and CP-LPETGG each incubated with both Sortase A7M and Sortase A5M. Both gels display multimers when coat and a sortase variant are in a sample together.

To investigate this issue, we had a look at the literature and found a matching description in the publication of Patterson et al.. They performed a similar experiment with P22 capsid proteins and observed the same multimers in their SDS-PAGEs . Comparing both SDS-PAGEs, we came to the following assumption:

Because of the promiscuity of Sortase A7M to accept primary amines as substrates, as we discussed previously, the formation of CP multimers occurs, unspecifically catalyzed by Sortase A7M.

Parallel to these experiments, we successfully modified the exterior of pre-assembled VLPs in vitro (VLP assembly). These modified VLPs were homogenous and overall correctly assembled. Therefore, we conclude that the described multimer problem only occurs when Sortase A7M encounters free CP.

Does methionine affect Sortase linking?

Sortase A7M preferably attaches N-terminal poly-G to C-terminal LPETGG. However, the first amino acid of a protein is methionine (to be specific, formylmethionine in bacteria). For our constructs that possess N-terminal polyG-tags, we have to ask ourselves the question: If the initial methionines are not cleaved off after the proteins have been produced, will this interfere with the Sortase reaction?

To investigate this, we cloned and purified another protein: TVMVsite-GGGG-mCherry. This protein can be treated with TVMV-protease, leading to *GGGG-mCherry. This *GGGG-mCherry was then compared to (M)GGGG-mCherry we used in all previous assays.

To investigate this, we cloned and purified two other proteins: TVMVsite-GGGG-mCherry and TEVsite-GGGG-sfGFP. Then we treated these proteins with the respective proteases, resulting in *GGGG-mCherry and *GGGG-sfGFP. Following this *GGGG-mCherry was then compared to (M)GGGG-mCherry which we used in all previous assays. Assays were also conducted on Fig. 24 the processed *GGGG-sfGFP substrate. Fig. 24 confirmed our assumptions that the unprocessed substrate cannot be linked to the sorting motif via Sortase A7M. Subsequently, *GGGG-sfGFP (after protease digest) demonstrate successful linkage via sortase-mediated ligation.

Due to these findings we modified our VLPs with *GGGG-sfGFP.

Figure 24 : Sortase-mediated ligation of TAMRA-LPETG and GGGG-sfGFP (with TEV cleavage site) one cut with TEV protease and one not. The sample with the unprocessed substrate shows no increase in RFU. In contrast the processed substrate shows a clear increase in ΔRFU. After 90 min the reverse reaction begins.The ΔRFU refers to the respective negative control without each sortase at 514 nm. The mean ΔRFU value of the duplicates was normalized to zero for better visualization.

We performed FRET-assays with TAMRA-LPETG and either of the following reaction partners:

  • (M)GGGG-mCherry, a protein sample that might still carry an N-terminal methionine
  • *GGGG-mCherry that does not carry any additional N-terminal residue

Before the FRET-assay was started, we adjusted the mCherry-concentrations of both fluorescent protein solutions to the same level. To do so, we diluted them until both showed the same fluorescence at 610 nm.

Figure 25: FRET of the sortase reaction connecting TAMRA-LPETG and GGGG-sfGFP mediated by Sortase A7M. The concentration of the Sortase A7M and TAMRA-LPETG was kept at the same level why the concentration of sfGFP was either 10,7 µM or 1,4 µM. The graphs show that the reverse reaction happens earlier if the GGGG-substrate concentration is lower. The ΔRFU refers to the respective negative control without each sortase at 514 nm. The mean ΔRFU value of the duplicates was normalized to zero for better visualization.

Strikingly, only the (M)GGGG-mCherry construct showed a clear decrease in delta RFU after the maximum delta RFU was reached (at about 160 min).

Figure 26 : Sortase-mediated ligation of TAMRA-LPETG and GGGG-mCherry one cut with TVMV protease and one with a methionine infront of the GGGG-tag. As visible the reverse reaction happens earlier if the methionine is not cleaved of the GGGG-tag. The ΔRFU is referring to the negative controls without Sortase A7M at 570 nm. The mean ΔRFU value of the tripicates was normalized to zero for better visualization.

We assume the following: Although we adjusted the overall mCherry concentration by fluorescence, we cannot determine the absolute amount of MGGGG-mCherry in the (M)GGGG-mCherry sample. However, if this amount was relatively high, the effective substrate concentration that could enter the sortase reaction would be low. That is because MGGGG is a worse sortase substrate than GGGG – if any at all. If we furthermore consider that a low substrate concentration correlates with a faster reverse reaction, we can explain the observed decrease in delta RFU for the (M)GGGG-mCherry sample that contrasts the delta RFU trend of the *GGGG-mCherry sample.

On this basis we can assume that a certain, yet unknown portion of the (M)GGGG-mCherry sample still carries an N-terminal methionine.

These FRET-assays let us assume that methionine disturbs or at least interferes with the sortase reaction mechanism. Indeed, our modeling suggests that methionine affects the interaction of polyG and the flexible loop near the active site of Sortase A7M. Click here if you want to know more about our modeling results!

This strengthens our hypothesis: If there is any amino acid in front of the poly-glycine sequence, substrate binding to Sortase A7M is negatively influenced.

Modeling

Introduction

In synthetic biology, theoretical models are often used to gain insights, predict and improve experiments. In our project we are modifying Virus-like particles (VLPs) by attaching proteins to the surface of the P22 capsid through a linker. The linking is catalyzed using the enzyme Sortase A7M, which is a calcium-independent mutant of the wild type Sortase A from Staphylococcus aureus. We performed modeling to predict the unknown structure of the Sortase A7M, to improve the linker between proteins and therefore optimizing the modification efficiency.
Here Rosetta Comparative Modeling was performed to predict the structure of Sortase A7M. The generated structure was characterized in terms of the molecular mechanisms and binding affinities of ligand peptides using molecular dynamics and docking simulations.

Structure determination

In silico modeling and simulation of proteins requires a 3D structure, which can be obtained from the RCSB Protein Data Bank. However, if no 3D structures are annotated, as it is the case with sortase A7M, the structure has to be determined by other means. The structure prediction of sortase A7M was done using two different approaches.

RosettaCM

Results

The simulation yielded 15,000 structures which have been compared using the Rosetta scoring functions (talaris2013). From the 15,000 structures generated, we inspected the ten best scoring structures.

As can be seen in Fig. 27 27, the most prominent differences can be found in the regions close to the N- and C-terminus. As fluctuations in those regions are not untypical, we decided to use the best scoring structure, candidate S_14771 (Fig. 28), as the input for the simulations to follow.

Figure 27 : The structural alignment of the ten best scoring sortase structures displaying minor differences with the exception of the C- and N-terminal regions. N- and C-terminal regions tend to show strong fluctuations, thus it is unsurprising to find the terminal regions to be unaligned

Figure 28 : Sortase A7M candidate S_14771 created through RosettaCM.

In order to evaluate the secondary structure of the Sortase A7M candidate S_14771 a Ramachandran plot has been created and compared to the five sortases used as input for the comparitive modeling.

Figure 29: The Ramachandran plot of randomly sampled proteins and the input structures of the comparative modeling show similar secondary structures. Secondary structure analysis of both sortase candidates reveals absence of secondary structures for the ML candidate. This is not the case with candidate S_14771 as the Ramachandran plot shows all relevant structures.

The Ramachandran plot (Fig. 29) showing α-helices and β-sheets is a strong indicator of a successful structure determination, as those secondary structures are crucial for the functionality of sortases.

Conclusion

We used monte-carlo simulations to determine the structure of the mutated transpeptidase Sortase A7M. As a first investigation of the secondary structure a Ramachandran plot of candidate S_14771 was made. The plot showing secondary structures was a first indicator of successful structure prediction. The approach, using Rosetta Comparative Modeling, yielded 15,000 structures scored with the talaris2013 scoring function. The ten best structures were aligned and exhibited almost identical secondary structures (Fig. 27). The greatest structural differences are present in the N- and C-terminal regions. Since terminal regions tend to fluctuate more strongly than non-terminal segments of the protein, we deemed those fluctuations non-relevant for the proteins functionality.
Being the best scoring candidate, structure S_14771 was analyzed structurally using a Ramachandran plot (Fig. 29). The plot shows all the relevant and typical structures sortases exhibit and serves as an indicator for a successful structure prediction.
In the steps to follow, a molecular dynamics (MD) simulation was performed on both structures.

Molecular dynamics

Results

The first possible indicators of a stable protein structure are converging root-mean-square deviation (RMSD), small root-mean-square fluctuation (RMSF) values as well as converging radii of gyration. Using the Python software package and the module Biotite we calculated these quantities and plotted the result for candidate S_14771.

Figure 30 : The RMSD is one of three main indicators of a stable protein structure of the MD simulation of S_14771 over the period of 200,000 ps. As time progressed the RMSD increased with a smaller slope. The value stabilizes at a time of 110,000 ps and fluctuated around the value of 6 Å.

Figure 31 : The prominent fluctuations of the residues from ranges 105 to 115 might indicate a binding site or another form of functional structure. The radius of gyration, just as the RMSD Fig. 30, stabilizes around a simulation time of of 110,000 ps and converges towards a value of 16.7 Å.

Figure 32 : The fluctuations (RMSF) of most residues appear insignificant compared to the first, the last residues and the residues close to residue 110 . Typically the N- and C-terminus tend to fluctuate more intensively due to the lack of stabilizing structures. The prominent fluctuations in the range of residue 105 to 115 can indicate a binding site or another form of functional structure.

Typical RMSDs and radii of gyration converge towards a value dependent on the size of the protein. Convergence of those quantities can be interpreted as a stable state of the protein structure. As it can be seen in Fig. 30 and Fig. 31 both the RMSD and the radius of gyration stabilize at the same time as the simulation reaches 110,000 ps (110 ns), suggesting a now stabilized structure of candidate S_14771 solvated in water. Another indicator of a functional protein is the RMSF. Instead of being averaged over all atoms, the RMSF is averaged over time with respect to each amino acid. It provides insights in both protein stability and functionality. Fig Fig. 32 reveals the RMSF of residues 105 to 115 to be significantly higher than that of other residues. This hints at the presence of a functional unit along these residues. As commented on in the section describing our structure prediction approaches, the N- and C-terminal regions tend to fluctuate more strongly as a result of the absence of stabilizing structures.

To further analyse the potential binding site, we performed a Principle Component Analysis.

Principle component analysis

To analyze our system further Principle Component Analysis (PCA) was performed using GROMACS. By applying PCA to a protein it is possible to gain insights into the relevant vibrational motions and thereby the physical mechanism of the protein.

Animation 33: A Principle Component Analysis of a fast (blue) and a slow (red) mode showing the most prominent movements of the Cα-chain of candidate S_14771. Both modes show movement of the β6/β7 loop consisting of residues 105 to 115 towards the active site . Thus we can assume that the closing β6/β7 loop is involved in the reaction mechanism.

The results from the Principle Component Analysis of candidate S_14771 (Amination 33) show a movement of the residues 105 to 115 towards the active site, supporting our theory that residues 105 to 115 are important for the reaction mechanism. Since the most relevant eigenvector (red), which shows the most relevant movement of the sortase, moves further towards the active site, it is possible that the β6/β7 loop either closes the binding site of the ligand peptides or even transports one peptide towards the other.

Conclusion

Candidate S_14771 that was generated using RosettaCM appears to be a fitting candidate not only due to successful analyses, but also due to the residues of the active site being in close proximity. Not the RMSF but also Principle Component Analysis indicate that residues 105 to 115 forming the β6/β7 loop are crucial for the molecular mechanism of our model.

Docking

Now that the binding site of the Sortase had been found, the peptide ligand needed to be inserted into the binding site to create a peptide-protein complex. The procedure of choice for the introduction of a ligand into the binding site of a protein is called docking. In the following sections, we will present the protocol and methods we used as well as the results they yielded.

Results

For sequences MGGGGPPPPPP(M-polyG), GGGGPPPPPP(polyG) and PPPPPPLPETGG(LPETGG) 50,000 structures have been created and clustered. After the clustering the sample consisted of 100 structures of docked complexes.

Figure 34 : The three best scoring structures (total score, interface score, reweighted score) of the LPETGG-tag are shown. Only two results are visible as the best reweighted score candidate is identical to the best interface score candidate. The reacting section of the LPETGG-tag namely glycine is colored yellow as is the active site. The glycin of both ligand peptides is facing the active site.

Analysis of the scores has shown a similar score for all the three dockings. The best scoring results of the LPETGG docking show a tendency of the glycines to face the active site while also being in close proximity to the active site.

Figure 35: The three best scoring structures (total score, interface score, reweighted score) of the polyG peptide are shown. Only two results are visible as the best reweighted score candidate is identical to the best interface score candidate. Instead of facing the active site (yellow) the reacting glycines (yellow) appear to interact with the β6/β7 loop of the sortase.

Figure 36: The three best scoring structures (total score, interface score, reweighted score) of the poly-g peptide are shown. Only two results are visible as the best reweighted score candidate is identical to the best interface score candidate. Concerning the M-poly-G peptide no uniform directional orientation can be observed. The structure with the best interface score (light blue) is oriendted towards the loop while the structure with the best total/reweighted (dark blue) is oriented towards the β-sheets.

Fig. 34 shows the docking result of the LPETGG peptide to the sortase. The results shown are the best scoring structures of the clustering with respect to the total score, interface score and reweighted score. As the best scoring structure is the same for the total score and the reweighted score only two peptides are shown. This also applies to Fig. 35 and Fig. 36. For both results the reacting glycin residues (yellow) are facing the active site. Additionally, the same residues are in close proximity to the active site.

The figures Fig. 35 and Fig. 36 show the docking of the both polyG and M-polyG. While polyG results align well and seem to be interacting with the β6/β7 loop rather than with the active site, this does not seem to be the case for M-polyG. Instead of both structures interacting with the β6/β7 loop or active site one (best interaction score; dark blue) interacts with the β6/β7 loop and the other (best reweighted/total score; light blue-gray) appears to interact with the active site.

Figure 37: The close up of the M-polyG peptide (best total/reweighted score) indicates an interaction of methionine with arginine139 and cysteine126.

Figure 38: Methionine of the result with the best interface score interacted with the β6/β7 loop rather than the active site. Still the reactive glycine residues appear to be bound to the β6/β7 loop.

As can be seen in Fig. 37 visualizing the result of the the docking simulation (total/reweighted score) suggests an interaction of methionine and two of the active sites namely arginine139 and cysteine126. Fig. 38 shows the interaction of M-polyG with the β6/β7 loop. The glycines still interact with the β6/β7 loop. Instead of binding above the β6/β7 loop, which is the case for polyG as illustrated in Fig. 36, the interaction seems to be influenced by methionine. By interacting with the residues in the β-helix methionine could potentially hinder binding of glycine to the β6/β7 loop by partial immobilization of the peptide. Overall peptide binding and orientation is less uniform compared polyG without the leading methionine, which could be an indicator of lesser binding affinity of M-PolyG towards the β6/β7 loop.

Conclusion

To computationally investigate binding affinities of the polyG and M-polyG as well as the LPETGG tags we performed docking simulations using the Rosetta FlexPepDock application. We used a modified version of the recommended protocol as the modified version was easier to automate and served our purpose better than the standard protocol. From the calculated scores only, we could not see a difference in binding affinities. Thus, we inspected the best scoring structures regarding the total score, the interface score and the reweighted score using PyMOL. Since the best structures with respect to total score and reweighted score were the same for all simulations, only two structures have been inspected per run. A polyproline tag was appended to all the peptides to simulate the modification of the VLPs with a small peptide.

As expected, the results showed that for LPETGG, the glycines of both peptides oriented towards the active site. This is unsurprising as peptides with the sequence LPXTGG are known to be substrate of the Sortase. It was more surprising to see the polyG tag oriented away from the active site since polyG also is a known substrate of the sortase. Both polyG peptides were facing the β6/β7 loop (residues 105 to 115) uniformly and appeared to be interacting with it. The M-polyG peptides did not show a uniform orientation or interaction scheme. On one hand the visualization of the best result concerning the total and reweighted score has shown interaction of methionine with the cysteine126 and arginine139, two residues of the active site. On the other hand, the visualization of the best result with respect to the interface score shows the M-polyG facing the mobile β6/β7 loop. In contrast to the polyG peptide the lacking the methionine, the M-polyG peptide is pulled down below the β6/β7 loop by the methionine interacting with one of the β-sheets leading to the active site. This is not the case with the polgG results, which lie aligned in one plane with the β6/β7 loop.

Modeling Conclusion

For our project it was key to understand and characterize Sortase A7M. As there is no annotated 3D structure for this specific Sortase, an in silico structure determination was performed. Comparative modeling with Rosetta produced valid structures. We used the best structure, candidate S_14771, for extensive characterization. We evaluated the model with regard to its secondary structure using Ramachandran plots. The Ramachandran plot suggested plausible secondary structures.

Molecular Dynamics simulations were used to investigate stability and dynamic properties of the candidate. The RMSD and radius of gyration stabilized over the course of the simulation, a first indicator of an equilibrated structure. Interestingly, RMSF analysis showed strond fluctuations of residues 105 to 115. We further investigated this by performing Principle Component Analysis. Doing so, we extracted the principle movements of the model. We could observe movement of the β6/β7 loop towards the active site, suggesing the presence of a binding site. Consequently, we performed docking simulations.

FlexPepDock was used to conduct the docking simulations with target peptides. Each run yielded 50,000 structures. In multiple steps we reduced the amount of complexes to 100 clusters with respect to total, reweighted and interface score. We extracted the best scoring complexes and investigated interactions.

For LPETGG we observed a uniform binding to the active site, fullfilling our expectation. Strikingly, polyG appeared to bind to the β6/β7 loop in a uniform manner. As it is know from literature polyG is a functioning ligand of sortase. Supported by literature and our data, we postulate the following mechanism: the β6/β7 loop transports bound polyG towards the active site of Sortase A7M, thereby lowering the activation energy of the linking reaction.

As the theory is neither backed up by nor contradicts experimental data, further research is required.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal XhoI site found at 445
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]