Difference between revisions of "Part:BBa K2967025"
Line 23: | Line 23: | ||
'''Figure 2. The response to NO sensors.''' | '''Figure 2. The response to NO sensors.''' | ||
'''A. The response to NO of P''yeaR''-luc in ''EcN''. Histogram of Luminescence(RLU):''' empty vector, P''yeaR''-luc without SNP, empty vector, P''yeaR''-luc with 100μM SNP. | '''A. The response to NO of P''yeaR''-luc in ''EcN''. Histogram of Luminescence(RLU):''' empty vector, P''yeaR''-luc without SNP, empty vector, P''yeaR''-luc with 100μM SNP. | ||
− | '''B. Comparison genetic leakage expression of P'' | + | '''B. Comparison genetic leakage expression of P''ytfE''-luc and P''yeaR''-NsrRBS-luc systems with or without NO induction.''' Blue bars indicated the luciferase expression percent under the NO induction, while Red bars showed the percentage of genetic leakage without NO induction. 100 μM Sodium Nitroprusside Dihydrate (SNP) aqueous solution was used continuously release NO and the final concentration is stable at about 5.5μM, |
'''Conclusion''' | '''Conclusion''' | ||
− | Compare to the unmodified P'' | + | Compare to the unmodified P''yeaR''-luc system (Fig.2B), the histogram of luminescence data demonstrated that the relative lower luciferase signal in P''yeaR''-NsrRBS system in the absence of NO. |
'''Reference''' | '''Reference''' |
Revision as of 10:42, 21 October 2019
The yeaR promoter added an extra NsrR Binding Sequences
Usage and Biology
This year, we chose BBa_K2967017PyeaR-Luc as an alternative to our inflammatory sensor, due to its sensitivity to nitrate and nitrite. When nitrate and nitrite enter E. coli, they will be converted to nitric oxide. Then nitric oxide will bind to the repressor protein NsrR that inactivates PyeaR to inhibit transcription of downstream genes.[1]
However, we noticed detectable basal expression (leakage) from the characterization of the NO sensor (PyeaR-Luc) (Fig. 2A). To reduce sensor basal background, we inserted an extra NsrR binding sequence (NsrRBS) downstream of PyeaR to create a ‘roadblocking’ effect [2] (Fig. 1).
Characterization
In order to simulate the inflammatory NO, 100 μM Sodium Nitroprusside Dihydrate (SNP) aqueous solution was used to continuously release NO and the final concentration was stable at about 5.5μM, which was the same as the NO concentration in IBD patients [1]. We used 100 μM SNP solutions for NO sensor sensitivity testing.
For the NO sensor sensitivity testing, we transformed the constructed plasmid with NO sensor into E. coli BL21 competent cells. Competent cells are cultured at 37 ℃ overnight, and then diluted to OD600 = 0.4. And then, culture bacteria at 37 ℃ for 1.5 hours, the appropriate concentration of inducer SNP aqueous solution were added. After 2 hours of SNP induction, we detected the expression of the luciferase by Luciferase assay (from Beyotime RG005). The Luminescence data indicated that the NO released by the SNP aqueous solution can effectively activate the expression of the reporter gene. (Fig. 2)
Figure 1. Diagram for NO sensor system in pCDFDuet-1. PyeaR, a promoter which is sensitive to NO. Native NsrRBS, the native NsrR binding sequence. Extra NsrRBS, the extra NsrR binding sequence. Luciferase, reporter gene.
Figure 2. The response to NO sensors. A. The response to NO of PyeaR-luc in EcN. Histogram of Luminescence(RLU): empty vector, PyeaR-luc without SNP, empty vector, PyeaR-luc with 100μM SNP. B. Comparison genetic leakage expression of PytfE-luc and PyeaR-NsrRBS-luc systems with or without NO induction. Blue bars indicated the luciferase expression percent under the NO induction, while Red bars showed the percentage of genetic leakage without NO induction. 100 μM Sodium Nitroprusside Dihydrate (SNP) aqueous solution was used continuously release NO and the final concentration is stable at about 5.5μM,
Conclusion
Compare to the unmodified PyeaR-luc system (Fig.2B), the histogram of luminescence data demonstrated that the relative lower luciferase signal in PyeaR-NsrRBS system in the absence of NO.
Reference
[1] Lin, H. Y., Bledsoe, P. J., & Stewart, V. (2007). Activation of yeaR-yoaG operon transcription by the nitrate-responsive regulator NarL is independent of oxygen-responsive regulator Fnr in Escherichia coli K-12. Journal of bacteriology, 189(21), 7539-7548.
[2] Merulla, D. & van der Meer, J. R. Regulatable and modulable background expression control in prokaryotic synthetic circuits by auxiliary repressor binding sites. ACS Synth. Biol. 5, 36–45 (2016).Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]