Difference between revisions of "Part:BBa M50098"

(Improvement: NUDT_CHINA 2019)
Line 15: Line 15:
 
<!-- -->
 
<!-- -->
  
===Improvement: NUDT_CHINA 2019===
+
=Improvement: NUDT_CHINA 2019=
 
Design
 
Design
 
In order to improve this part, this year we have made a series of modification based on the Minimum TATA-box promoter designed by Daniel Tang of Stanford BIOE44 - S11.(BBa_M50098). Due to the low efficiency of TATA box promoter, we shorten the sequence into only minp. In addition, we also added glucose-sensing fragment to enhance the part’s initiation strength, as well as glucose-sensing function.
 
In order to improve this part, this year we have made a series of modification based on the Minimum TATA-box promoter designed by Daniel Tang of Stanford BIOE44 - S11.(BBa_M50098). Due to the low efficiency of TATA box promoter, we shorten the sequence into only minp. In addition, we also added glucose-sensing fragment to enhance the part’s initiation strength, as well as glucose-sensing function.

Revision as of 10:22, 21 October 2019


Minimum TATA-box promoter

The minimum TATA promoter is a eukaryotic DNA sequence that indicates a transcription start site. The minimum TATA promoter shows low levels of transcription at baseline. Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

Improvement: NUDT_CHINA 2019

Design In order to improve this part, this year we have made a series of modification based on the Minimum TATA-box promoter designed by Daniel Tang of Stanford BIOE44 - S11.(BBa_M50098). Due to the low efficiency of TATA box promoter, we shorten the sequence into only minp. In addition, we also added glucose-sensing fragment to enhance the part’s initiation strength, as well as glucose-sensing function. Because there is high blood glucose concentration in diabetics, in order to get improved gene which is sensitive to diabetics it’s convenient to employ promoter which reacts to high blood glucose. Transcription factor -- ChREBP -- can be effectively expressed with high blood glucose. Meanwhile, heterodimer which consists of ChREBP and Mlx can combine with gene promoter CHoRE to induce gene transcription. Therefore, we choose CHoRE as promoter of engineered plasmid and connect it with minP to indicates a transcription start site. In addition, we increase the number of CHoRE to realize that engineered gene will be activated by particular high blood glucose concentration instead of normal blood glucose concentration.
The structure diagram of the improved part is as below.
T--NUDT_CHINA--9XGSP.png
Figure 1. The structure diagram of the 9xGSP part.