Difference between revisions of "Part:BBa K3165056"

Line 14: Line 14:
 
The T7 DNA-dependent RNA Polymerase is commonly used for protein expression due to its high processivity and high selectivity for T7 promoter. Bacterial RNA Polymerase cannot transcribe the genes under the T7 promoter, so under normal circumstances, the genes under the T7 promoter will not be transcribed and hence the gene product won't be synthesized (some lysogenic bacterial strains can produce the proteins under T7 expression).
 
The T7 DNA-dependent RNA Polymerase is commonly used for protein expression due to its high processivity and high selectivity for T7 promoter. Bacterial RNA Polymerase cannot transcribe the genes under the T7 promoter, so under normal circumstances, the genes under the T7 promoter will not be transcribed and hence the gene product won't be synthesized (some lysogenic bacterial strains can produce the proteins under T7 expression).
 
<br><br>
 
<br><br>
Thus we can use the T7 expression system in our model organism for protein expression. Splitting up of the T7 RNA Polymerase into two separate domains, each linked to a photo-sensitive dimerizing unit is an effective means to regulate protein expression in a cell. Upon shining light of appropriate frequency (blue light for the T7 system), the photo-sensitive domains dimerize leading to the functional reactivity of the T7 RNA Polymerase. Upon stimulation, the T7 RNA Polymerase becomes functional and transcribes the genes downstream to the T7 promoter, providing a dynamic means to control protein expression. <br>  
+
Thus we can use the T7 expression system in our model organism for protein expression. Splitting up of the T7 RNA Polymerase into two separate domains, each linked to a photo-sensitive dimerizing unit is an effective means to regulate protein expression in a cell. Upon shining light of appropriate frequency (blue light for the T7 system), the photo-sensitive domains aggregate with each other leading to the functional reactivity of the T7 RNA Polymerase. Upon stimulation, the T7 RNA Polymerase becomes functional and transcribes the genes downstream to the T7 promoter, providing a dynamic means to control protein expression. <br>  
 
This part uses a bacteriostatic growth-inhibitory phage protein, Gp2 for dynamically regulating the bacterial populations. This part encodes for the entire opto T7 RNA Polymerase system with Gp2 as the growth-inhibitory protein for the light-mediated control of bacterial populations.
 
This part uses a bacteriostatic growth-inhibitory phage protein, Gp2 for dynamically regulating the bacterial populations. This part encodes for the entire opto T7 RNA Polymerase system with Gp2 as the growth-inhibitory protein for the light-mediated control of bacterial populations.
  

Revision as of 02:40, 21 October 2019


N-T7 - nMag + C-T7 - pMag + Gp2 (for Escherichia coli)

This composite system consists of the entire optogenetic T7 RNA Polymerase system with Gp2 under the pCpcG2 promoter.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 7
    Illegal NheI site found at 30
    Illegal NheI site found at 2367
    Illegal NheI site found at 2390
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 1678
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 3800
    Illegal AgeI site found at 901
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 1350
    Illegal BsaI.rc site found at 2874

Usage and Biology

The T7 DNA-dependent RNA Polymerase is commonly used for protein expression due to its high processivity and high selectivity for T7 promoter. Bacterial RNA Polymerase cannot transcribe the genes under the T7 promoter, so under normal circumstances, the genes under the T7 promoter will not be transcribed and hence the gene product won't be synthesized (some lysogenic bacterial strains can produce the proteins under T7 expression).

Thus we can use the T7 expression system in our model organism for protein expression. Splitting up of the T7 RNA Polymerase into two separate domains, each linked to a photo-sensitive dimerizing unit is an effective means to regulate protein expression in a cell. Upon shining light of appropriate frequency (blue light for the T7 system), the photo-sensitive domains aggregate with each other leading to the functional reactivity of the T7 RNA Polymerase. Upon stimulation, the T7 RNA Polymerase becomes functional and transcribes the genes downstream to the T7 promoter, providing a dynamic means to control protein expression.
This part uses a bacteriostatic growth-inhibitory phage protein, Gp2 for dynamically regulating the bacterial populations. This part encodes for the entire opto T7 RNA Polymerase system with Gp2 as the growth-inhibitory protein for the light-mediated control of bacterial populations.