Difference between revisions of "Part:BBa K3196002"

Line 2: Line 2:
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K3196002 short</partinfo>
 
<partinfo>BBa_K3196002 short</partinfo>
 +
Small laccase gene
 +
 +
<!-- Add more about the biology of this part here
 +
===Usage and Biology===
 +
 +
<!-- -->
 +
<span class='h3bb'>Sequence and Features</span>
 +
<partinfo>BBa_K3196002 SequenceAndFeatures</partinfo>
 +
 +
 +
<!-- Uncomment this to enable Functional Parameter display
 +
===Functional Parameters===
 +
<partinfo>BBa_K3196002 parameters</partinfo>
 +
<!-- -->
  
Small laccase gene
 
 
<h1>'''Characterization'''</h1>
 
<h1>'''Characterization'''</h1>
 
Amplified from S. coelicolor.
 
Amplified from S. coelicolor.
Line 18: Line 31:
 
<h1>'''Enzyme Activity'''</h1>
 
<h1>'''Enzyme Activity'''</h1>
 
[[File:T--HUST-China--2019-SLAC enzyme activity.png|400px|thumb|center|Figure4:these four pictures shows the enzyme activity changes with the time. The four kinds of Pichia pastoris have the different curve, and the most activity strain is FLO10-apro, PHO5apro shows a more delayed increase on enzyme activity.]]
 
[[File:T--HUST-China--2019-SLAC enzyme activity.png|400px|thumb|center|Figure4:these four pictures shows the enzyme activity changes with the time. The four kinds of Pichia pastoris have the different curve, and the most activity strain is FLO10-apro, PHO5apro shows a more delayed increase on enzyme activity.]]
 
 
 
<!-- Add more about the biology of this part here
 
===Usage and Biology===
 
 
<!-- -->
 
<span class='h3bb'>Sequence and Features</span>
 
<partinfo>BBa_K3196002 SequenceAndFeatures</partinfo>
 
 
 
<!-- Uncomment this to enable Functional Parameter display
 
===Functional Parameters===
 
<partinfo>BBa_K3196002 parameters</partinfo>
 
<!-- -->
 

Revision as of 04:39, 20 October 2019


SLAC Small laccase gene

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 345


Characterization

Amplified from S. coelicolor.

Usage and Biology

Laccase is a multicopper oxidase, capable of catalyzing one-electron oxidation of a wide range of substrates to generate radicals while concomitantly reducing molecular oxygen to water[1]. Laccases are widely distributed in nature. They have been isolated from fungi, plants, insects and bacteria[2] of which fungal laccases are well characterized [3]. Bacterial laccases, such as the small laccase from S. coelicolor (SLAC), can be useful alternatives to fungal laccases. SLAC exhibits some desirable characteristics such as activity at high temperatures and alkaline pH [4], making it a potential candidate in biotechnological applications. Extracellular expression could be a desirable alternative for expression of foreign proteins since it simplifies purification steps [5]. P. pastoris is usually the preferred host for the production of industrial enzymes.  

DNA Gel Electrophoretic

Figure1:This is the result of the SacⅠ single endonuclease digestion plasmid of the TOP10 strain, we will extract the gel and obtain the aimed DNA.
Figure2:The image above shows the successful transformation of the target gene into the Pichia pastoris genome, including SLAC FLO10, SLAC PHO5 apro, and SLAC.

SDS-PAGE

Figure3:the SDS-page result shows that Pichia pastoris have successfully secrete SLAC protein into superfluous liquid.

Enzyme Activity

Figure4:these four pictures shows the enzyme activity changes with the time. The four kinds of Pichia pastoris have the different curve, and the most activity strain is FLO10-apro, PHO5apro shows a more delayed increase on enzyme activity.